ترغب بنشر مسار تعليمي؟ اضغط هنا

440 - N. S. Dzhalilov (1 , 2 , 2009
Wave properties and instabilities in a magnetized, anisotropic, collisionless, rarefied hot plasma in fluid approximation are studied, using the 16-moments set of the transport equations obtained from the Vlasov equations. These equations differ from the CGL-MHD fluid model (single fluid equations by Chew, Goldberger, and Low, 1956) by including two anisotropic heat flux evolution equations, where the fluxes invalidate the double polytropic CGL laws. We derived the general dispersion relation for linear compressible wave modes. Besides the classic incompressible fire hose modes there appear four types of compressible wave modes: two fast and slow mirror modes - strongly modified compared to the CGL model - and two thermal modes. In the presence of initial heat fluxes along the magnetic field the wave properties become different for the waves running forward and backward with respect to the magnetic field. The well known discrepancies between the results of the CGL-MHD fluid model and the kinetic theory are now removed: i) The mirror slow mode instability criterion is now the same as that in the kinetic theory. ii) Similarly, in kinetic studies there appear two kinds of fire hose instabilities - incompressible and compressible ones. These two instabilities can arise for the same plasma parameters, and the instability of the new compressible oblique fire hose modes can become dominant. The compressible fire hose instability is the result of the resonance coupling of three retrograde modes - two thermal modes and a fast mirror mode. The results can be applied to the theory of solar and stellar coronal and wind models.
We study wave instability in an collisionless, rarefied hot plasma (e.g. solar wind or corona). We consider the anisotropy produced by the magnetic field, when the thermal gas pressures across and along the field become unequal. We apply the 16-momen t transport equations (obtained from the Boltzmann-Vlasov kinetic equation) including the anisotropic thermal fluxes. The general dispersion relation for the incompressible wave modes is derived. It is shown that a new, more complex wave spectrum with stable and unstable behavior is possible, in contrast to the classic fire-hose modes obtained in terms of the 13-moment integrated equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا