ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a paradigm for characterization of artifacts in limited data tomography problems. In particular, we use this paradigm to characterize artifacts that are generated in reconstructions from limited angle data with generalized Radon transforms and general filtered backprojection type operators. In order to find when visible singularities are imaged, we calculate the symbol of our reconstruction operator as a pseudodifferential operator.
We develop a paradigm using microlocal analysis that allows one to characterize the visible and added singularities in a broad range of incomplete data tomography problems. We give precise characterizations for photo- and thermoacoustic tomography an d Sonar, and provide artifact reduction strategies. In particular, our theorems show that it is better to arrange Sonar detectors so that the boundary of the set of detectors does not have corners and is smooth. To illustrate our results, we provide reconstructions from synthetic spherical mean data as well as from experimental photoacoustic data.
64 - Jurgen Frikel 2011
We investigate the reconstruction problem of limited angle tomography. Such problems arise naturally in applications like digital breast tomosynthesis, dental tomography, electron microscopy etc. Since the acquired tomographic data is highly incomple te, the reconstruction problem is severely ill-posed and the traditional reconstruction methods, such as filtered backprojection (FBP), do not perform well in such situations. To stabilize the reconstruction procedure additional prior knowledge about the unknown object has to be integrated into the reconstruction process. In this work, we propose the use of the sparse regularization technique in combination with curvelets. We argue that this technique gives rise to an edge-preserving reconstruction. Moreover, we show that the dimension of the problem can be significantly reduced in the curvelet domain. To this end, we give a characterization of the kernel of limited angle Radon transform in terms of curvelets and derive a characterization of solutions obtained through curvelet sparse regularization. In numerical experiments, we will present the practical relevance of these results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا