ترغب بنشر مسار تعليمي؟ اضغط هنا

The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the avera ge of the mutual information over all pairs <I> is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating <I> show that as the number of network nodes N approaches infinity, the quantity N<I> exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N<I> is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.
This paper addresses the question of whether a single tile with nearest neighbor matching rules can force a tiling in which the tiles fall into a large number of isohedral classes. A single tile is exhibited that can fill the Euclidean plane only wit h a tiling that contains k distinct isohedral sets of tiles, where k can be made arbitrarily large. It is shown that the construction cannot work for a simply connected 2D tile with matching rules for adjacent tiles enforced by shape alone. It is also shown that any of the following modifications allows the construction to work: (1) coloring the edges of the tiling and imposing rules on which colors can touch; (2) allowing the tile to be multiply connected; (3) requiring maximum density rather than space-filling; (4) allowing the tile to have a thickness in the third dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا