ترغب بنشر مسار تعليمي؟ اضغط هنا

We show how to model the transition between distinct quantum Hall plateaus in terms of D-branes in string theory. A low energy theory of 2+1 dimensional fermions is obtained by considering the D3-D7 system, and the plateau transition corresponds to m oving the branes through one another. We study the transition at strong coupling using gauge/gravity duality and the probe approximation. Strong coupling leads to a novel kind of plateau transition: at low temperatures the transition remains discontinuous due to the effects of dynamical symmetry breaking and mass generation, and at high temperatures is only partially smoothed out.
We review recent developments in understanding quantum/string corrections to BPS black holes and strings in five-dimensional supergravity. These objects are solutions to the effective action obtained from M-theory compactified on a Calabi-Yau threefo ld, including the one-loop corrections determined by anomaly cancellation and supersymmetry. We introduce the off-shell formulation of this theory obtained through the conformal supergravity method and review the methods for investigating supersymmetric solutions. This leads to quantum/string corrected attractor geometries, as well as asymptotically flat black strings and spinning black holes. With these solutions in hand, we compare our results with analogous studies in four-dimensional string-corrected supergravity, emphasizing the distinctions between the four and five dimensional theories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا