ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - J. Grange 2015
Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and mod ern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.
High-quality charged current quasielastic scattering data have recently been reported for both muon neutrinos and antineutrinos from several accelerator-based neutrino experiments. Measurements from MiniBooNE were the first to indicate that more comp lex nuclear effects, now thought to be the result of nucleon pair correlations, may contribute to neutrino quasielastic samples at a much higher significance than previously assumed. These findings are now being tested by MINER$ u$A and other contemporary neutrino experiments. Presented here is a comparison of data from MiniBooNE and MINER$ u$A to a few example parametrizations of these nuclear effects. It has been demonstrated that such effects may bias future measurements of neutrino oscillation parameters and so this issue continues to press the neutrino community. A comparison of data over a large range of neutrino energies is one approach to exploring the extent to which such nucleon correlations may influence our understanding and subsequent modeling of neutrino quasielastic scattering.
The first measurements of antineutrino charged-current quasielastic ($ umub$ CCQE, $ umu + N to mup + N$) and neutral-current elastic ($ umub$ NCE, $ umu + N to umu + N$) cross sections with $< E_{bar{ u}} >$ $<$ 1 GeV are presented. To maximize the precision of these measurements, many data-driven background measurements were executed, including a first demonstration of charge separation using a non-magnetized detector. Apart from extending our knowledge of antineutrino interactions by probing a new energy range, these measurements constrain signal and background processes for current and future neutrino oscillation experiments and also carry implications for intra-nuclear interactions.
The largest sample ever recorded of $ umub$ charged-current quasi-elastic (CCQE, $ umub + p to mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $frac{d^{2}sigma}{dT_mu duz} $ for $ umub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $sigma(E_ u)$ and single-differential cross section $frac{dsigma}{dqsq}$ on both mineral oil and on carbon by subtracting the $ umub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
79 - Joseph Grange 2011
MiniBooNE anti-neutrino charged-current quasi-elastic (CCQE) data is compared to model predictions. The main background of neutrino-induced events is examined first, where three independent techniques are employed. Results indicate the neutrino flux is consistent with a uniform reduction of $sim$ 20% relative to the largely uncertain prediction. After background subtraction, the $Q^{2}$ shape of $ umub$ CCQE events is consistent with the model parameter $M_{A}$ = 1.35 GeV determined from MiniBooNE $ umu$ CCQE data, while the normalization is $sim$ 20% high compared to the same prediction.
Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity $ umu$ induced charged-current single $pip$ (CC1$pip$) sample while the second exploits the difference between the angular distributions of muons created in $ umu$ and $ umub$ charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1$pip$ analysis indicates the predicted $ umu$ flux should be scaled by $0.76 pm 0.11$, while the CCQE angular fit yields $0.65 pm 0.23$. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of anti-neutrino beams observed by future non-magnetized detectors.
76 - Joseph Grange 2009
Using a high-statistics sample of anti-neutrino charged current quasi-elastic (CCQE) events, MiniBooNE reports the challenges in measuring parameters within the Relativistic Fermi Gas model. As the CCQE analysis has been completed in MiniBooNEs neutr ino data, particular attention is paid to the differences in CCQE interactions between the two running modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا