ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical reactions in starless molecular clouds are heavily dependent on interactions between gas phase material and solid phase dust and ices. We have observed the abundance and distribution of molecular gases in the cold, starless core DC 000.4-19. 5 (SL42) in Corona Australis using data from the Swedish ESO Submillimeter Telescope. We present column density maps determined from measurements of C18O(J=2-1,1-0) and N2H+(J=1-0) emission features. Herschel data of the same region allow a direct comparison to the dust component of the cloud core and provide evidence for gas phase depletion of CO at the highest extinctions. The dust color emperature in the core calculated from Herschel maps ranges from roughly 10.7 to 14.0 K. This range agrees with the previous determinations from Infrared Space Observatory and Planck observations. The column density profile of the core can be fitted with a Plummer-like density distribution approaching n(r) ~ r^{-2} at large distances. The core structure deviates clearly from a critical Bonnor-Ebert sphere. Instead, the core appears to be gravitationally bound and to lack thermal and turbulent support against the pressure of the surrounding low-density material: it may therefore be in the process of slow contraction. We test two chemical models and find that a steady-state depletion model agrees with the observed C18O column density profile and the observed N(C18O) versus AV relationship.
44 - J. Harju 2008
Cold cores in interstellar molecular clouds represent the very first phase in star formation. The physical conditions of these objects are studied in order to understand how molecular clouds evolve and how stellar masses are determined. The purpose o f this study is to probe conditions in the dense, starless clump Ophichus D (Oph D). The ground-state (1(10)-1(11)) rotational transition of ortho-H2D+ was observed with APEX towards the density peak of Oph D. The width of the H2D+ line indicates that the kinetic temperature in the core is about 6 K. So far, this is the most direct evidence of such cold gas in molecular clouds. The observed H2D+ spectrum can be reproduced with a hydrostatic model with the temperature increasing from about 6 K in the centre to almost 10 K at the surface. The model is unstable against any increase in the external pressure, and the core is likely to form a low-mass star. The results suggest that an equilibrium configuration is a feasible intermediate stage of star formation even if the larger scale structure of the cloud is thought to be determined by turbulent fragmentation. In comparison with the isothermal case, the inward decrease in the temperature makes smaller, i.e. less massive, cores susceptible to externally triggered collapse.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا