ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate the transmission of single electron wavepackets from a clock-controlled source through an empty high-energy edge channel. The quantum dot source is loaded with single electrons which are then emitted with high kinetic energy ($sim$150 meV). We find at high magnetic field that these electron can be transported over several microns without inelastic electron-electron or electron-phonon scattering. Using a time-resolved spectroscopic technique, we measure the electron energy and wavepacket size at picosecond time scales. We also show how our technique can be used to switch individual electrons into different paths.
We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measu rements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا