ترغب بنشر مسار تعليمي؟ اضغط هنا

The practical focus of this work is the dynamical simulation of polarization transport processes in quantum spin microscopy and spectroscopy. The simulation framework is built-up progressively, beginning with state-spaces (configuration manifolds) th at are geometrically natural, introducing coordinates that are algebraically natural; and finally specifying dynamical potentials that are physically natural; in each respect explicit criteria are given for naturality. The resulting framework encompasses Hamiltonian flow (both classical and quantum), quantum Lindbladian processes, and classical thermostatic processes. Constructive validation and verification criteria are given for metric and symplectic flows on classical, quantum, and hybrid state-spaces, with particular emphasis to tensor network state-spaces. Both classical and quantum examples are presented, including dynamic nuclear polarization (DNP). A broad span of applications and challenges is discussed, ranging from the design and simulation of quantum spin microscopes to the design and simulation of quantum oracles.
This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test m asses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto a state-space manifold having reduced dimensionality and possessing a Kahler potential of multi-linear form. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low-dimensionality Kahler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given, and methods for quantum state optimization by Dantzig selection are given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا