ترغب بنشر مسار تعليمي؟ اضغط هنا

198 - John H. Wise 2008
It has been argued that low-luminosity dwarf galaxies are the dominant source of ionizing radiation during cosmological reionization. The fraction of ionizing radiation that escapes into the intergalactic medium from dwarf galaxies with masses less t han ~10^9.5 solar masses plays a critical role during this epoch. Using an extensive suite of very high resolution (0.1 pc), adaptive mesh refinement, radiation hydrodynamical simulations of idealized and cosmological dwarf galaxies, we characterize the behavior of the escape fraction in galaxies between 3 x 10^6 and 3 x 10^9 solar masses with different spin parameters, amounts of turbulence, and baryon mass fractions. For a given halo mass, escape fractions can vary up to a factor of two, depending on the initial setup of the idealized halo. In a cosmological setting, we find that the time-averaged photon escape fraction always exceeds 25% and reaches up to 80% in halos with masses above 10^8 solar masses with a top-heavy IMF. The instantaneous escape fraction can vary up to an order of magnitude in a few million years and tend to be positively correlated with star formation rate. We find that the mean of the star formation efficiency times ionizing photon escape fraction, averaged over all atomic cooling (T_vir > 8000 K) galaxies, ranges from 0.02 for a normal IMF to 0.03 for a top-heavy IMF, whereas smaller, molecular cooling galaxies in minihalos do not make a significant contribution to reionizing the universe due to a much lower star formation efficiency. These results provide the physical basis for cosmological reionization by stellar sources, predominately atomic cooling dwarf galaxies.
The first stars form in dark matter halos of masses ~10^6 M_sun as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from their shallow potential well of their surrounding dark matt er halos. We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions. We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H_2 cooling create a complex, multi-phase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10^4 K to approximately 10^{-3} of solar metallicity. We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.
(Abridged) Using ab initio cosmological Eulerian adaptive mesh refinement radiation hydrodynamical calculations, we discuss how very massive stars start the process of cosmological reionization. The models include non-equilibrium primordial gas chemi stry and cooling processes and accurate radiation transport in the Case B approximation using adaptively ray traced photon packages, retaining the time derivative in the transport equation. Supernova feedback is modeled by thermal explosions triggered at parsec scales. All calculations resolve the local Jeans length by at least 16 grid cells at all times and as such cover a spatial dynamic range of ~10^6. These first sources of reionization are highly intermittent and anisotropic and first photoionize the small scales voids surrounding the halos they form in, rather than the dense filaments they are embedded in. As the merging objects form larger, dwarf sized galaxies, the escape fraction of UV radiation decreases and the HII regions only break out on some sides of the galaxies making them even more anisotropic. In three cases, SN blast waves induce star formation in overdense regions that were formed earlier from ionization front instabilities. These stars form tens of parsecs away from the center of their parent DM halo. Approximately 5 ionizing photons are needed per sustained ionization when star formation in 10^6 M_sun halos are dominant in the calculation. As the halos become larger than ~10^7 M_sun, the ionizing photon escape fraction decreases, which in turn increases the number of photons per ionization to 15-50, in calculations with stellar feedback only. Supernova feedback in these more massive halos creates a more diffuse medium, allowing the stellar radiation to escape more easily and maintaining the ratio of 5 ionizing photons per sustained ionization.
39 - John H. Wise 2008
Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial condi tions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of ~10^8 M_sun galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10^5 solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا