ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a comprehensive de Haas--van Alphen (dHvA) study of the iron pnictide LaFe$_2$P$_2$. Our extensive density-functional band-structure calculations can well explain the measured angular-dependent dHvA frequencies. As salient feature, we ob serve only one quasi-two-dimensional Fermi-surface sheet, i.e., a hole-like Fermi-surface cylinder around $Gamma$, essential for $s_pm$ pairing, is missing. In spite of considerable mass enhancements due to many-body effects, LaFe$_2$P$_2$ shows no superconductivity. This is likely caused by the absence of any nesting between electron and hole bands.
148 - R. Lortz , Y. Wang , A. Demuer 2007
The specific heat of the layered organic superconductor $kappa$-% (BEDT-TTF)$_2$Cu(NCS)$_2$, where BEDT-TTF is bisethylenedithio-% tetrathiafulvalene, has been studied in magnetic fields up to 28 T applied perpendicular and parallel to the supercondu cting layers. In parallel fields above 21 T, the superconducting transition becomes first order, which signals that the Pauli-limiting field is reached. Instead of saturating at this field value, the upper critical field increases sharply and a second first-order transition line appears within the superconducting phase. Our results give strong evidence that the phase, which separates the homogeneous superconducting state from the normal state is a realization of a Fulde-Ferrell-Larkin-Ovchinnikov state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا