ترغب بنشر مسار تعليمي؟ اضغط هنا

For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symm etry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0to 0$ one carries zero mode contributions.
We study the electromagnetic form factors, decay constants and charge radii of the pion and kaon within the framework of light-front field theory formalism where we use an ansatz for the quark-meson interaction bound-state function which is symmetric under exchange of quark and antiquark momentum. The above mentioned observables are evaluated for the $+$ component of the electromagnetic current, $J^+$, in the Breit frame. We also check the invariance of these observables in other frames, whereby both the valance and the non-valence contributions have to be taken into account, and study the sensitivity of the electromagnetic form factors and charge radius to the models parameters; namely, the quark masses, $m_u=m_d$, $m_{bar s}$, and the regulator mass, $m_R$. It is found that after a fine tuning of the regulator mass, i.e. $m_R=0.6$ GeV, the model is suitable to fit the available experimental data within the theoretical uncertainties of both the pion and kaon.
The electromagnetic current~$J^+$ for spin-1, is used here to extract the electromagnetic form-factors of a light-front constituent quark model. The charge ($G_0$), magnetic ($G_1$) and quadrupole $G_2$ form factors are calculated using different pre scriptions known in the literature, for the combinations of the four independent matrix elements of the current between the polarisations states in the Drell-Yan frame. However, the results for some prescriptions relying only on the valence contribution breaks the rotational symmetry as they violate the angular condition. In the present work, we use some relations between the matrix elements of the electromagnetic current in order to eliminate the breaking of the rotational symmetry, by computing the zero-mode contributions to matrix elements resorting only to the valence ones.
Using the light-front pion wave function based on a Bethe-Salpeter amplitude model, we study the properties of the pion in symmetric nuclear matter. The pion model we adopt is well constrained by previous studies to explain the pion properties in vac uum. In order to consistently incorporate the constituent up and down quarks of the pion immersed in symmetric nuclear matter, we use the quark-meson coupling model, which has been widely applied to various hadronic and nuclear phenomena in a nuclear medium with success. We predict the in-medium modifications of the pion lectromagnetic form factor, charge radius and weak decay constant in symmetric nuclear matter.
The contribution of the light-front valence wave function to the electromagnetic current of spin-1 composite particles is not enough to warranty the proper transformation of the current under rotations. The naive derivation of the plus component of t he current in the Drell-Yan-West frame within an analytical and covariant model of the vertex leads to the violation of the rotational symmetry. Computing the form-factors in a quasi Drell-Yan-West frame $q^+rightarrow 0$, we were able to separate out in an analytical form the contributions from Z-diagrams or zero modes using the instant-form cartesian polarization basis.
The electromagnetic form factors of light and heavy pseudoscalar mesons are calculated within two covariant constituent-quark models, a light-front and a dispersion relation approach. We investigate the details and physical origins of the model depen dence of various hadronic observables: the weak decay constant, the charge radius and the elastic electromagnetic form factor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا