ترغب بنشر مسار تعليمي؟ اضغط هنا

The high rate of planet detection among solar-type stars argues that planet formation is common. It is also generally assumed that planets form in protoplanetary discs like those observed in nearby star forming regions. On what timescale does the tra nsformation from discs to planets occur? Here we show that current inventories of planets and protoplanetary discs are sensitive enough to place basic constraints on the timescale and efficiency of the planet formation process. A comparison of planet detection statistics and the measured solid reservoirs in T Tauri discs suggests that planet formation is likely already underway at the few Myr age of the discs in Taurus-Auriga, with a large fraction of solids having been converted into large objects with low millimeter opacity and/or sequestered at small disc radii where they are difficult to detect at millimeter wavelengths.
Observations from Spitzer and ground-based infrared spectroscopy reveal significant diversity in the molecular emission from the inner few AU of T Tauri disks. We explore theoretically the possible origin of this diversity by expanding on our earlier thermal-chemical model of disk atmospheres. We consider how variations in grain settling, X-ray irradiation, accretion-related mechanical heating, and the oxygen-to-carbon ratio can affect the thermal and chemical properties of the atmosphere at 0.25-40 AU. We find that these model parameters can account for many properties of the detected molecular emission. The column density of the warm (200-2000K) molecular atmosphere is sensitive to grain settling and the efficiency of accretion-related heating, which may account, at least in part, for the large range in molecular emission fluxes that have been observed. The dependence of the atmospheric properties on the model parameters may also help to explain trends that have been reported in the literature between molecular emission strength and mid-infrared color, stellar accretion rate, and disk mass. We discuss whether some of the differences between our model results and the observations (e.g., for water) indicate a role for vertical transport and freeze-out in the disk midplane. We also discuss how planetesimal formation in the outer disk (beyond the snowline) may imprint a chemical signature on the inner few AU of the disk and speculate on possible observational tracers of this process.
We present high resolution (R=80,000) spectroscopy of [NeII] emission from two young stars, GM Aur and AA Tau, which have moderate to high inclinations. The emission from both sources appears centered near the stellar velocity and is broader than the [NeII] emission measured previously for the face-on disk system TW Hya. These properties are consistent with a disk origin for the [NeII] emission we detect, with disk rotation (rather than photoevaporation or turbulence in a hot disk atmosphere) playing the dominant role in the origin of the line width. In the non-face-on systems, the [NeII] emission is narrower than the CO fundamental emission from the same sources. If the widths of both diagnostics are dominated by Keplerian rotation, this suggests that the [NeII] emission arises from larger disk radii on average than does the CO emission. The equivalent width of the [NeII] emission we detect is less than that of the spectrally unresolved [NeII] feature in the Spitzer spectra of the same sources. Variability in the [NeII] emission or the mid-infrared continuum, a spatially extended [NeII] component, or a very (spectrally) broad [NeII] component might account for the difference in the equivalent widths.
102 - Joan R. Najita 2008
We present high resolution (R=25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R=230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior t o the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا