ترغب بنشر مسار تعليمي؟ اضغط هنا

Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Sinc e hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individual components. We studied the effect of external X-ray irradiation on hot star winds. We used our kinetic equilibrium (NLTE) wind models to estimate the influence of external X-ray ionization for different X-ray luminosities and source distances. The models are calculated for parameters typical of O stars. The influence of X-rays is given by the X-ray luminosity, by the optical depth between a given point and the X-ray source, and by a distance to the X-ray source. Therefore, the results can be interpreted in the diagrams of X-ray luminosity vs.~the optical depth parameter. X-rays are negligible in binaries with low X-ray luminosities or at large distances from the X-ray source. The influence of X-rays is stronger for higher X-ray luminosities and in closer proximity of the X-ray source. There is a forbidden area with high X-ray luminosities and low optical depth parameters, where the X-ray ionization leads to wind inhibition. There is excellent agreement between the positions of observed stars in these diagrams and our predictions. All wind-powered high-mass X-ray binary (HMXB) primaries lie outside the forbidden area. Many of them lie close to the border of the forbidden area, indicating that their X-ray luminosities are self-regulated. We discuss the implications of our work for other binary types.
Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing di sk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
39 - Jiri Krticka , Jiri Kubat 2008
During the evolution of first stars, the CNO elements may emerge on their surfaces due to the mixing processes. Consequently, these stars may have winds driven purely by CNO elements. We study the properties of such stellar winds and discuss their in fluence on the surrounding environment. For this purpose, we used our own NLTE models and tested which stellar parameters of the first stars at different evolutionary stages result in CNO winds. If such winds are possible, we calculate their hydrodynamic structure and predict their parameters. We show that, while the studied stars do not have any wind driven purely by hydrogen and helium, CNO driven winds exist in more luminous stars. On the other hand, for very hot stars, CNO elements are too ionized to drive a wind. In most cases the derived mass-loss rate is much less than calculated with solar mixture of elements. This is because wind mass-loss rate in present hot stars is dominated by elements heavier than CNO. We conclude that, until a sufficient amount of these elements is created, the influence of line-driven winds is relatively small on the evolution of hot stars (which are not close to the Eddington limit).
We study the influence of clumping on the predicted wind structure of O-type stars. For this purpose we artificially include clumping into our stationary wind models. When the clumps are assumed to be optically thin, the radiative line force increase s compared to corresponding unclumped models, with a similar effect on either the mass-loss rate or the terminal velocity (depending on the onset of clumping). Optically thick clumps, alternatively, might be able to decrease the radiative force.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا