ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - Nima Asadi , Jimmy Lin , 2012
Tree-based models have proven to be an effective solution for web ranking as well as other problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, given an already-trained mod el. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processor architectures. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures and significantly improve the speed of tree-based models over hard-coded if-else blocks. Our work contributes to the exploration of architecture-conscious runtime implementations of machine learning algorithms.
In recent years, there has been a substantial amount of work on large-scale data analytics using Hadoop-based platforms running on large clusters of commodity machines. A less-explored topic is how those data, dominated by application logs, are colle cted and structured to begin with. In this paper, we present Twitters production logging infrastructure and its evolution from application-specific logging to a unified client events log format, where messages are captured in common, well-formatted, flexible Thrift messages. Since most analytics tasks consider the user session as the basic unit of analysis, we pre-materialize session sequences, which are compact summaries that can answer a large class of common queries quickly. The development of this infrastructure has streamlined log collection and data analysis, thereby improving our ability to rapidly experiment and iterate on various aspects of the service.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا