ترغب بنشر مسار تعليمي؟ اضغط هنا

Sun et al. provided an insightful comment arXiv:1108.5739v1 on our manuscript entitled Controllability of Complex Networks with Nonlinear Dynamics on arXiv. We agree on their main point that linearization about locally desired states can be violated in general by the breakdown of local control of the linearized complex network with nonlinear state. Therefore, we withdraw our manuscript. However, other than nonlinear dynamics, our claim that a single-node-control can fully control the general bidirectional/undirected linear network with 1D self-dynamics is still valid, which is similar to (but different from) the conclusion of arXiv:1106.2573v3 that all-node-control with a single signal can fully control any direct linear network with nodal-dynamics (1D self-dynamics).
An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equation s are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.
58 - Jie Ren , Xin-He Meng , Liu Zhao 2008
We investigate an exact solution that describes the embedding of the four-dimensional (4D) perfect fluid in a five-dimensional (5D) Einstein spacetime. The effective metric of the 4D perfect fluid as a hypersurface with induced matter is equivalent t o the Robertson-Walker metric of cosmology. This general solution shows interconnections among many 5D solutions, such as the solution in the braneworld scenario and the topological black hole with cosmological constant. If the 5D cosmological constant is positive, the metric periodically depends on the extra dimension. Thus we can compactify the extra dimension on $S^1$ and study the phenomenological issues. We also generalize the metric ansatz to the higher-dimensional case, in which the 4D part of the Einstein equations can be reduced to a linear equation.
186 - Jie Ren , Xin-He Meng , Liu Zhao 2007
We propose a Hamiltonian formalism for a generalized Friedmann-Roberson-Walker cosmology model in the presence of both a variable equation of state (EOS) parameter $w(a)$ and a variable cosmological constant $Lambda(a)$, where $a$ is the scale factor . This Hamiltonian system containing 1 degree of freedom and without constraint, gives Friedmann equations as the equation of motion, which describes a mechanical system with a variable mass object moving in a potential field. After an appropriate transformation of the scale factor, this system can be further simplified to an object with constant mass moving in an effective potential field. In this framework, the $Lambda$ cold dark matter model as the current standard model of cosmology corresponds to a harmonic oscillator. We further generalize this formalism to take into account the bulk viscosity and other cases. The Hamiltonian can be quantized straightforwardly, but this is different from the approach of the Wheeler-DeWitt equation in quantum cosmology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا