ترغب بنشر مسار تعليمي؟ اضغط هنا

167 - Jian Gao , B. W. Jiang , Aigen Li 2013
Based on the photometric data from the Spitzer/SAGE survey and with red giants as the extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A_lambda/A_Ks, the exti nction in the four IRAC bands (i.e., [3.6], [4.5], [5.8] and [8.0]um) relative to the 2MASS Ks band at 2.16um. We obtain the near-infrared (NIR) extinction coefficient to be E(J-H)/E(H-Ks)=1.29pm0.04 and E(J-Ks)/E(H-Ks)=1.94pm0.04. The wavelength dependence of the MIR extinction A_lambda/A_Ks in the LMC varies from one sightline to another. The overall mean MIR extinction is A_[3.6]/A_Ks=0.72pm0.03, A_[4.5]/A_Ks=0.94pm0.03, A_[5.8]/A_Ks=0.58pm0.04, and A_[8.0]/A_Ks=0.62pm0.05. Except for the extinction in the IRAC [4.5] band which may be contaminated by the 4.6um CO gas absorption of red giants (which are used to trace the LMC extinction), the extinction in the other three IRAC bands show a flat curve, close to the Milky Way Rv = 5.5 model extinction curve (where Rv is the optical total-to-selective extinction ratio). The possible systematic bias caused by the correlated uncertainties of Ks-lambda and J-Ks is explored in terms of Monte-Carlo simulations. It is found that this could lead to an overestimation of A_lambda/A_Ks in the MIR.
88 - Jian Gao 2009
Based on the data obtained from the Spitzer/GLIPMSE Legacy Program and the 2MASS project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8] and [8.0] micron, relative to the 2MASS Ks band (at 2.16 micron) for 131 GLIPMSE fields alo ng the Galactic plane within |l|<65 deg, using red giants and red clump giants as tracers. As a whole, the mean extinction in the IRAC bands (normalized to the 2MASS Ks band), A_[3.6]/A_Ks=0.63, A_[4.5]/A_Ks=0.57, A_[5.8]/A_Ks=0.49, A_[8.0]/A_Ks=0.55, exhibits little variation with wavelength (i.e. the extinction is somewhat flat or gray). This is consistent with previous studies and agrees with that predicted from the standard interstellar grain model for R_V=5.5 by Weingartner & Draine (2001). As far as individual sightline is concerned, however, the wavelength dependence of the mid-infrared interstellar extinction A_{lambda}/A_Ks varies from one sightline to another, suggesting that there may not exist a universal IR extinction law. We, for the first time, demonstrate the existence of systematic variations of extinction with Galactic longitude which appears to correlate with the locations of spiral arms as well as with the variation of the far infrared luminosity of interstellar dust.
63 - Jian Gao 2008
Observationally, both the 3.4micron aliphatic hydrocarbon C--H stretching absorption feature and the 9.7micron amorphous silicate Si--O stretching absorption feature show considerable variations from the local diffuse interstellar medium (ISM) to Gal actic center (GC): both the ratio of the visual extinction (A_V) to the 9.7micron Si--O optical depth (tausil) and the ratio of A_V to the 3.4micron C--H optical depth (tauahc) of the solar neighborhood local diffuse ISM are about twice as much as that of the GC. In this work, we try to explain these variations in terms of a porous dust model consisting of a mixture of amorphous silicate, carbonaceous organic refractory dust (as well as water ice for the GC dust).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا