ترغب بنشر مسار تعليمي؟ اضغط هنا

Very light right-handed (RH) sneutrinos in the Next-to-Minimal Supersymmetric Standard Model can be viable candidates for cold dark matter. We investigate the prospects for their direct detection, addressing their compatibility with the recent signal observed by the CoGeNT detector, and study the implications for Higgs phenomenology. We find that in order to reproduce the correct relic abundance very light RH sneutrinos can annihilate into either a fermion-antifermion pair, very light pseudoscalar Higgses or RH neutrinos. If the main annihilation channel is into fermions, we point out that RH sneutrinos could naturally account for the CoGeNT signal. Furthermore, the lightest Higgs has a very large invisible decay width, and in some cases the second-lightest Higgs too. On the other hand, if the RH sneutrino annihilates mostly into pseudoscalars or RH neutrinos the predictions for direct detection are below the current experimental sensitivities and satisfy the constraints set by CDMS and XENON. We also calculate the gamma ray flux from RH sneutrino annihilation in the Galactic centre, including as an interesting new possibility RH neutrinos in the final state. These are produced through a resonance with the Higgs and the resulting flux can exhibit a significant Breit-Wigner enhancement.
Recently, there are two hints arising from physics beyond the standard model. One is a possible energy loss mechanism due to emission of very weakly interacting light particles from white dwarf stars, with a coupling strength ~ 0.7x10^{-13}, and anot her is the high energy positrons observed by the PAMELA satellite experiment. We construct a supersymmetric flipped-SU(5) model, SU(5)xU(1)_X with appropriate additional symmetries, [U(1)_H]_{gauge}x[U(1)_RxU(1)_Gamma]_{global}xZ_2, such that these are explained by a very light electrophilic axion of mass 0.5 meV from the spontaneously broken U(1)_Gamma and two component cold dark matters from Z_2 parity. We show that in the flipped-SU(5) there exists a basic mechanism for allowing excess positrons through the charged SU(2) singlet leptons, but not allowing anti-proton excess due to the absence of the SU(2) singlet quarks. We show the discovery potential of the charged SU(2) singlet E at the LHC experiments by observing the electron and positron spectrum. With these symmetries, we also comment on the mass hierarchy between the top and bottom quarks.
We present the dark matter (DM) extension (by N) of the minimal supersymmetric standard model to give the recent trend of the high energy positron spectrum of the PAMELA/HEAT experiments. If the trend survives by future experiments, the MSSM needs to be extended. Here, we minimally extend the MSSM with one more DM component N together with a heavy lepton E, and introduce the coupling e_R E_R^c N_R. This coupling naturally appears in the flipped SU(5) GUT models. This N_{DM}MSSM contains the discrete symmetry Z_6, and for some parameter ranges there result two DM components. For the MSSM fields, the conventional R-parity, which is a subgroup of Z_6, is preserved. We also present the needed parameter ranges of these additional particles.
We improve the estimate of the axion CDM energy density by considering the new values of current quark masses, the QCD phase transition effect and a possible anharmonic effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا