ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a point particle coupled to 2+1 gravity, with de Sitter gauge group SO(3,1). We observe that there are two contraction limits of the gauge group: one resulting in the Poincare group, and the second with the gauge group having the form AN( 2) ltimes an(2)^*. The former case was thoroughly discussed in the literature, while the latter leads to the deformed particle action with de Sitter momentum space, like in the case of kappa-Poincare particle. However, the construction forces the mass shell constraint to have the form p_0^2 = m^2, so that the effective particle action describes the deformed Carroll particle.
In her Comment arXiv:1202.4066 [hep-th] Hossenfelder proposes a generalization of the results we reported in Phys. Rev. D84 (2011) 087702 and argues that thermal fluctuations introduce incurable pathologies for the description of macroscopic bodies i n the relative-locality framework. We here show that Hossenfelders analysis, while raising a very interesting point, is incomplete and leads to incorrect conclusions. Her estimate for the fluctuations did not take into account some contributions from the geometry of momentum space which must be included at the relevant order of approximation. Using the full expression here derived one finds that thermal fluctuations are not in general large for macroscopic bodies in the relative-locality framework. We find that such corrections can be unexpectedly large only for some choices of momentum-space geometry, and we comment on the possibility of developing a phenomenology suitable for possibly ruling out such geometries of momentum space.
387 - J. Kowalski-Glikman 2013
In this paper we review some aspects of relativistic particles mechanics in the case of a non-trivial geometry of momentum space. We start with showing how the curved momentum space arises in the theory of gravity in 2+1 dimensions coupled to particl es, when (topological) degrees of freedom of gravity are solved for. We argue that there might exist a similar topological phase of quantum gravity in 3+1 dimensions. Then we characterize the main properties of the theory of interacting particles with curved momentum space and the symmetries of the action. We discuss the spacetime picture and the emergence of the principle of relative locality, according to which locality of events is not absolute but becomes observer dependent, in the controllable, relativistic way. We conclude with the detailed review of the most studied kappa-Poincare framework, which corresponds to the de Sitter momentum space.
I briefly discuss the construction of a theory of particles with curved momentum space and its consequence, the principle of relative locality.
We describe $kappa$-Minkowski space and its relation to group theory. The group theoretical picture makes it possible to analyze the symmetries of this space. As an application of this analysis we analyze in detail free field theory on $kappa$-Minkow ski space and the Noether charges associated with deformed spacetime symmetries.
This paper is devoted to detailed investigations of free scalar field theory on $kappa$-Minkowski space. After reviewing necessary mathematical tools we discuss in depth the Lagrangian and solutions of field equations. We analyze the spacetime symmet ries of the model and construct the conserved charges associated with translational and Lorentz symmetry. We show that the version of the theory usually studied breaks Lorentz invariance in a subtle way: There is an additional trans-Planckian mode present, and an associated conserved charge (the number of such modes) is not a Lorentz scalar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا