ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently the supercooled Wahnstrom binary Lennard-Jones mixture was partially crystallized into ${rm MgZn_2}$ phase crystals in lengthy Molecular Dynamics simulations. We present Molecular Dynamics simulations of a modified Kob-Andersen binary Lennar d-Jones mixture that also crystallizes in lengthy simulations, here however by forming pure fcc crystals of the majority component. The two findings motivate this paper that gives a general thermodynamic and kinetic treatment of the stability of supercooled binary mixtures, emphasizing the importance of negative mixing enthalpy whenever present. The theory is used to estimate the crystallization time in a Kob-Andersen mixture from the crystallization time in a series of relared systems. At T=0.40 we estimate this time to be 5$times 10^{7}$ time units ($approx 1. ms$). A new binary Lennard-Jones mixture is proposed that is not prone to crystallization and faster to simulate than the two standard binary Lennard-Jones mixtures; this is obtained by removing the like-particle attractions by switching to Weeks-Chandler-Andersen type potentials, while maintaining the unlike-particle attraction.
Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correla tions was previously deduced indirectly by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two temperatures showing that the correlation coefficient increases as the phase transition is approached.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا