ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s pectra by Hubble/COS and the Far Ultraviolet Spectroscopic Explorer (FUSE) make this suggestion conclusive by demonstrating that the spectrum of I Zw 18-NW shows no metal lines like O VI 1032, 1038 of comparable ionization as the He II recombination emission.
We present a spectroscopic analysis of HST/COS observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with VLT/X-shooter by Tramper et al. (2011, 2014) who claimed that their m ass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the FUV spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss - metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the NLTE stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Ha. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Zsun = 1/5, similar to a SMC-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al. (2014), and those predicted by the widely used theoretical recipe by Vink et al. (2001). On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy (2012). We do not concur with Tramper et al. (2011, 2014) that there is a breakdown in the mass-loss - metallicity relation.
We study the evolution, rotation, and surface abundances of O-type dwarfs in the Small Magellanic Cloud. We analyzed the UV and optical spectra of twenty-three objects and derived photospheric and wind properties. The observed binary fraction of the sample is ~ 26%, which is compatible with more systematic studies, if one considers that the actual binary fraction is potentially larger owing to low-luminosity companions and that the sample excluded obvious spectroscopic binaries. The location of the fastest rotators in the H-R diagram indicates that these could be several Myr old. The offset in the position of these fast rotators compared with the other stars confirms the predictions of evolutionary models that fast-rotating stars tend to evolve more vertically in the H-R diagram. Only one star of luminosity-class Vz, expected to best characterize extreme youth, is located on the ZAMS, the other two stars are more evolved. The distribution of nitrogen abundance of O and B stars suggests that the mechanisms responsible for the chemical enrichment of slowly rotating massive stars depends only weakly on the stars mass. We confirm that the group of slowly rotating N-rich stars is not reproduced by the evolutionary tracks. Our results call for stronger mixing in the models to explain the range of observed N abundances. All stars have an N/C ratio as a function of stellar luminosity that matches the predictions of the stellar evolution models well. More massive stars have a higher N/C ratio than the less massive stars. Faster rotators show on average a higher N/C ratio than slower rotators. The N/O versus N/C ratios agree qualitatively well with those of stellar evolution models. The only discrepant behavior is observed for the youngest two stars of the sample, which both show very strong signs of mixing, which is unexpected for their evolutionary status.
154 - J.-C. Bouret 2008
We report here the detection of a weak magnetic field of 50 - 100 G on the O9.7 supergiant zeta Ori A, using spectropolarimetric observations obtained with NARVAL at the 2m Telescope Bernard Lyot atop Pic du Midi (France). zeta Ori A is the third O s tar known to host a magnetic field (along with theta^1 Ori C and HD 191612), and the first detection on a normal rapidly-rotating O star. The magnetic field of zeta Ori A is the weakest magnetic field ever detected on a massive star. The measured field is lower than the thermal equipartition limit (about 100 G). By fitting NLTE model atmospheres to our spectra, we determined that zeta Ori A is a 40 Msun star with a radius of 25 Rsun and an age of about 5 - 6 Myr, showing no surface nitrogen enhancement and losing mass at a rate of about 2x10^(-6) Msol/yr. The magnetic topology of zeta Ori A is apparently more complex than a dipole and involves two main magnetic polarities located on both sides of the same hemisphere; our data also suggest that zeta Ori A rotates in about 7.0 d and is about 40 degrees away from pole-on to an Earth-based observer. Despite its weakness, the detected magnetic field significantly affects the wind structure; the corresponding Alfven radius is however very close to the surface, thus generating a different rotational modulation in wind lines than that reported on the two other known magnetic O stars. The rapid rotation of zeta Ori A with respect to theta^1 Ori C appears as a surprise, both stars having similar unsigned magnetic fluxes (once rescaled to the same radius); it may suggest that the sub-equipartition field detected on zeta Ori A is not a fossil remnant (as opposed to that of theta^1 Ori C and HD 191612), but the result of an exotic dynamo action produced through MHD instabilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا