ترغب بنشر مسار تعليمي؟ اضغط هنا

141 - Jean A. Eilek 2014
In this paper I present dynamic models of the radio source Centaurus A, and critique possible models of in situ particle reacceleration (ISR) within the radio lobes. The radio and gamma-ray data require neither homogeneous plasma nor quasi-equipartit ion between plasma and magnetic field; inhomogeneous models containing both high-field and low-field regions are equally likely. Cen A cannot be as young as the radiative lifetimes of its relativistic electrons, which range from a few to several tens of Myr. Two classes of dynamic models -- flow driven and magnetically driven -- are consistent with current observations; each requires Cen A to be on the order of a Gyr old. Thus, ongoing ISR must be occurring within the radio source. Alfven-wave ISR is probably occurring throughout the source, and may be responsible for maintaining the gamma-ray-loud electrons. It is likely to be supplemented by shock or reconnection ISR which maintains the radio-loud electrons in high-field regions.
Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. T hese fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as $ u^{-2}$, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.
237 - J. A. Eilek , T. H. Hankins 2007
Our high time resolution observations of individual pulses from the Crab pulsar show that the main pulse and interpulse differ in temporal behavior, spectral behavior, polarization and dispersion. The main pulse properties are consistent with one cur rent model of pulsar radio emission, namely, soliton collapse in strong plasma turbulence. The high-frequency interpulse is quite another story. Its dynamic spectrum cannot easily be explained by any current emission model; its excess dispersion must come from propagation through the stars magnetosphere. We suspect the high-frequency interpulse does not follow the ``standard model, but rather comes from some unexpected region within the stars magnetosphere. Similar observations of other pulsars will reveal whether the radio emission mechanisms operating in the Crab pulsar are unique to that star, or can be identified in the general population.
286 - T. H. Hankins , J. A. Eilek 2007
Our high time resolution observations of individual pulses from the Crab pulsar show that both the time and frequency signatures of the interpulse are distinctly different from those of the main pulse. Main pulses can occasionally be resolved into sh ort-lived, relatively narrow-band nanoshots. We believe these nanoshots are produced by soliton collapse in strong plasma turbulence. Interpulses at centimeter wavelengths are very different. Their dynamic spectrum contains regular, microsecond-long emission bands. We have detected these bands, proportionately spaced in frequency, from 4.5 to 10.5 GHz. The bands cannot easily be explained by any current theory of pulsar radio emission; we speculate on possible new models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا