ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric field effect (EFE) controlled magnetoelectric transport in thin films of undoped and La-doped Sr$_{2}$IrO$_{4}$ (SIO) were investigated under the action of ionic liquid gating. Despite large carrier density modulation, the temperature depend ent resistance measurements exhibit insulating behavior in chemically and EFE doped samples with the band filling up to 10%. The ambipolar transport across the Mott gap is demonstrated by EFE tuning of the activation energy. Further, we observe a crossover from a negative magnetoresistance (MR) at high temperatures to positive MR at low temperatures. The crossover temperature was around $sim$80-90 K, irrespective of the filling. This temperature and magnetic field dependent crossover is qualitatively associated with a change in the conduction mechanism from Mott to Coulomb gap mediated variable range hopping (VRH). This explains the origin of robust insulating ground state of SIO in electrical transport studies and highlights the importance of disorder and Coulombic interaction on electrical properties of SIO.
We investigated size effects on thermoelectricity in thin films of a strongly correlated layered cobaltate. At room temperature, the thermopower is independent of thickness down to 6 nm. This unusual behavior is inconsistent with the Fuchs-Sondheimer theory, which is used to describe conventional metals and semiconductors, and is attributed to the strong electron correlations in this material. Although the resistivity increases, as expected, below a critical thickness of $sim$ 30 nm. The temperature dependent thermopower is similar for different thicknesses but resistivity shows systematic changes with thickness. Our experiments highlight the differences in thermoelectric behavior of strongly correlated and uncorrelated systems when subjected to finite size effects. We use the atomic limit Hubbard model at the high temperature limit to explain our observations. These findings provide new insights on decoupling electrical conductivity and thermopower in correlated systems.
SrTiO$_3$ is a promising $n$-type oxide semiconductor for thermoelectric energy conversion. Epitaxial thin films of SrTiO$_3$ doped with both La and oxygen vacancies have been synthesized by pulsed laser deposition (PLD). The thermoelectric and galva nomagnetic properties of these films have been characterized at temperatures ranging from 300 K to 900 K and are typical of a doped semiconductor. Thermopower values of double-doped films are comparable to previous studies of La doped single crystals at similar carrier concentrations. The highest thermoelectric figure of merit ($ZT$) was measured to be 0.28 at 873 K at a carrier concentration of $2.5times10^{21}$ cm$^{-3}$.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p lanes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا