ترغب بنشر مسار تعليمي؟ اضغط هنا

68 - Juergen Baehr 2012
We present here the status of the medium size prototype for the Cherenkov Telescope Array. The main reasons to build the prototype are the test of the steel structure, the training of various mounting operations, the test of the drive system and the test of the safety system. The essential difference between the medium size telescope prototype and a fully instrumented are that the camera is not instrumented and only a part of the mounted mirrors are optical mirrors. Insofar no high energy gamma rays can be detected by the prototype telescope. The prototype will be setup in autumn 2012 in Berlin.
Different theoretical models predict VHE gamma-ray emission to arise in tight binary star systems (high mass-loss and high wind speeds), which has not been confirmed experimentally so far. Here we present the first bounds on the VHE emission from two isolated Wolf-Rayet star binaries, WR147 and WR146, obtained with the MAGIC telescope.
110 - Javier Rico , Robert Wagner 2009
MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive in the 30 GeV-30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamm a-rays below 100 GeV. We review the most recent experimental results obtained using MAGIC.
42 - Javier Rico 2008
MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive in the 30 GeV-30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamm a-rays below 100 GeV. We review the most recent experimental results on Galactic sources obtained using MAGIC. These include pulsars, binary systems, supernova remnants and unidentified sources.
118 - J. Rico , M. Rissi , P. Bordas 2007
We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, span ning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا