ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray absorption spectroscopy measurements in Pr0.5Ca0.5CoO3 were performed at the Pr M4,5, Pr L3, and Ca L2,3 absorption edges as a function of temperature below 300 K. Ca spectra show no changes down to 10 K while a noticeable thermally dependent e volution takes place at the Pr edges across the metal-insulator transition. Spectral changes are analyzed by different methods, including multiple scattering simulations, which provide quantitative details on an electron loss at Pr 4f orbitals. We conclude that in the insulating phase a fraction [15(+5)%] of Pr3+ undergoes a further oxidation to adopt a hybridized configuration composed of an admixture of atomic-like 4f1 states (Pr4+) and f- symmetry states on the O 2p valence band (Pr3+L states) indicative of a strong 4f- 2p interaction.
The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.
The effect of doping on the electronic structure at the Mn sites in the La_{1-x}Sr_{1+x}MnO_4 series (x=0, 0.3 and 0.5) was studied by means of non-resonant hard X- ray emission spectroscopy (XES). We observe a linear dichroism in the Mn K-beta main lines (3p to 1s transitions) that is strongest for x=0 and decreases with increasing x to 0.5. The Mn K-beta main lines in the poly-crystalline samples change considerably less upon increasing the hole doping (substitution of La by Sr) than it would be expected based on the change of formal valence. From this we conclude that the charge and spin density at the Mn sites are only little affected by doping. This implies that holes injected in the La_{1-x}Sr_{1+x}MnO_4 series mainly result in a decrease of charge density on the oxygen atoms, i.e. oxygen takes part in the charge balancing. These findings are supported by many-body cluster calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا