ترغب بنشر مسار تعليمي؟ اضغط هنا

We present first results from our study of the properties of ~400 low redshift (z < 0.5) quasars, based on a large homogeneous dataset derived from the Stripe 82 area of the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). For this sky region, d eep (r~22.4) u,g,r,i,z images are available, up to ~2 mag deeper than standard SDSS images, allowing us to study both the host galaxies and the Mpc-scale environments of the quasars. This sample greatly outnumbers previous studies of low redshift quasar hosts, from the ground or from space. Here we report the preliminary results for the quasar host galaxies. We are able to resolve the host galaxy in ~80 % of the quasars. The quasar hosts are luminous and large, the majority of them in the range between M*-1 and M*-2, and with ~10 kpc galaxy scale-lengths. Almost half of the host galaxies are best fit with an exponential disk, while the rest are spheroid-dominated. There is a reasonable relation between the central black hole mass and the host galaxy luminosity.
We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These sp ectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
Since no spectroscopic redshift is available for the remarkable BL Lac object 1ES 0647+250, we aim to derive an estimate of its distance from the properties of its host galaxy.We obtained a deep, high-resolution near-infrared H-band image of the BL L acertae object 1ES 0647+250. We are able to detect the underlying host galaxy in the near-infrared. The host galaxy has an H-band magnitude of 16.9+-0.2 and an effective radius of 1.6+-0.3 arcsec. Using the imaging redshift method by Sbarufatti et al. (2005), we estimate a redshift z = 0.41+-0.06. This redshift is consistent with the previously reported imaging redshift estimate from the optical i-band, z = 0.45+-0.08 by Meisner & Romani (2010), and with previously reported lower limits for the redshift. It is also in agreement with constraints from its gamma-ray emission. Imaging searches in the near-infrared, even with moderately sized telescopes, for the host galaxies of BL Lac objects at unknown redshift, are encouraged, as well as optical spectroscopy of 1ES 0647+250 with large telescopes to determine its spectroscopic redshift.
We present near-infrared imaging obtained with ESO VLT/ISAAC of a sample of 16 low luminosity radio-quiet quasars at the epoch around the peak of the quasar activity (2 < z < 3), aimed at investigating their host galaxies. For 11 quasars, we are able to detect the host galaxies and derive their properties, while for the other five quasars, upper limits to the host luminosity are estimated. The luminosities of the host galaxies of radio-quiet quasars at high redshift are in the range of those of massive inactive elliptical galaxies. This work complements our previous systematic study of quasar hosts aimed to trace the cosmological luminosity evolution of the host galaxies up to z ~2 and extends our pilot study of a few luminous quasars at z > 2. The luminosity trend with cosmic epoch resembles that observed for massive inactive galaxies, suggesting a similar star formation history. In particular, both quasar host galaxies and massive inactive galaxies appear mostly assembled already at the peak age of the quasar activity. This result is of key importance for testing the models of joint formation and evolution of galaxies and their active nuclei.
The properties of high redshift quasar host galaxies are studied, in order to investigate the connection between galaxy evolution, nuclear activity, and the formation of supermassive black holes. We combine new near-infrared observations of three hig h redshift quasars (2 < z < 3), obtained at the ESO Very Large Telescope equipped with adaptive optics, with selected data from the literature. For the three new objects we were able to detect and characterize the properties of the host galaxy, found to be consistent with those of massive elliptical galaxies of M(R) ~ -24.7 for the one radio loud quasar, and M(R) ~ -23.8 for the two radio quiet quasars. When combined with existing data at lower redshift, these new observations depict a scenario where the host galaxies of radio loud quasars are seen to follow the expected trend of luminous (~5L*) elliptical galaxies undergoing passive evolution. This trend is remarkably similar to that followed by radio galaxies at z > 1.5. Radio quiet quasars hosts also follow a similar trend but at a lower average luminosity (~0.5 mag dimmer). The data indicate that quasar host galaxies are already fully formed at epochs as early as ~2 Gyr after the Big Bang and then passively fade in luminosity to the present epoch.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا