ترغب بنشر مسار تعليمي؟ اضغط هنا

Combined neutron and x-ray diffraction experiments demonstrate the formation of a low-temperature minority tetragonal phase in Ba$_{0.76}$K$_{0.24}$Fe$_2$As$_2$ in addition to the majority magnetic, orthorhombic phase. A coincident enhancement in the magnetic ($frac{1}{2}$ $frac{1}{2}$ 1) peaks shows that this minority phase is of the same type that was observed in Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ ($0.24 leq x leq 0.28$), in which the magnetic moments reorient along the $c$-axis. This is evidence that the tetragonal magnetic phase is a universal feature of the hole-doped iron-based superconductors.
We present neutron diffraction analysis of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ over a wide temperature (10 to 300 K) and compositional ($0.11 leq x leq 0.79$) range, including the normal state, the magnetically ordered state, and the superconducting state. The paramagnetic to spin-density wave and orthorhombic to tetragonal transitions are first order and coincident within the sensitivity of our measurements ($sim 0.5$ K). Extrapolation of the orthorhombic order parameter down to zero suggests that structural quantum criticality cannot exist at compositions higher than $x = 0.28$, which is much lower than values determined using other methods, but in good agreement with our observations of the actual phase stability range. The onset of spin-density wave order shows a stronger structural anomaly than the charge-doped system in the form of an enhancement of the $c/a$ ratio below the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا