ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a resonance Raman study of the disorder-induced D mode in a sample highly enriched with semiconducting (9,7) single-walled carbon nanotubes in the excitation energy range of 1.49 - 2.05 eV. The intensity of the D mode shows a resonance beh avior near the optical transition of the (9,7) tube. The well-known dispersion of the D-mode frequency, on the other hand, is not observed at the resonance, but only above a certain excitation energy. We explain our results by numerical simulations of the D-mode spectra.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm-1 to 110 cm-1) is observed as a function of the nanotubes chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.
We present the full in-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical and acoustic branches, as well as the mid-frequency range between the $K$ and $M$ points in the Brillouin zone, where experimen tal data have been unavailable so far. The existence of a Kohn anomaly at the $K$ point is further supported. We fit a fifth-nearest neighbour force-constants model to the experimental data, making improved force-constants calculations of the phonon dispersion in both graphite and carbon nanotubes available.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا