ترغب بنشر مسار تعليمي؟ اضغط هنا

171 - Jan Steinhoff 2015
We suggest that the physically irrelevant choice of a representative worldline of a relativistic spinning particle should correspond to a gauge symmetry in an action approach. Using a canonical formalism in special relativity, we identify a (first-cl ass) spin gauge constraint, which generates a shift of the worldline together with the corresponding transformation of the spin on phase space. An action principle is formulated for which a minimal coupling to fields is straightforward. The electromagnetic interaction of a monopole-dipole particle is constructed explicitly.
200 - Jan Steinhoff 2014
Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action . The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.
We consider a universal relation between moment of inertia and quadrupole moment of arbitrarily fast rotating neutron stars. Recent studies suggest that this relation breaks down for fast rotation. We find that it is still universal among various sug gested equations of state for constant values of certain dimensionless parameters characterizing the magnitude of rotation. One of these parameters includes the neutron star radius, leading to a new universal relation expressing the radius through the mass, frequency, and spin parameter. This can become a powerful tool for radius measurements.
In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [1]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covari ant action functional. The formalism is valid to terms linear in the single spin variables and up to and including the next-to-leading order approximation in the gravitational spin-interaction part. The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given within covariant spin supplementary conditions. The applied coordinate conditions are the generalized isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by Damour, Jaranowski, and Schaefer [2], is rederived and the derivation of the next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [3], is presented.
The static, i.e., linear momentum independent, part of the next-to-leading order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the post-Newtonian (PN) approximation is calculated from a 3-dim. covariant ansatz for the Hamilton co nstraint. All coefficients in this ansatz can be uniquely fixed for black holes. The resulting Hamiltonian fits into the canonical formalism of Arnowitt, Deser, and Misner (ADM) and is given in their transverse-traceless (ADMTT) gauge. This completes the recent result for the momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of motion resulting from this Hamiltonian are an important step toward more accurate calculations of templates for gravitational waves.
Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isot ropic coordinates. A comparison with other methods is given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا