ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t he distributional nature of scattering amplitudes. Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The polarization part of the differential subleading soft operators in turn is determined up to a single numerical factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization of the Lorentz group allows to fix the subleading operators completely.
A self-consistent exposition of the theory of tree-level superamplitudes of the 4d N=4 and 6d N=(1,1) maximally supersymmetric Yang-Mills theories is provided. In 4d we work in non-chiral superspace and construct the superconformal and dual superconf ormal symmetry generators of the N=4 SYM theory using the non-chiral BCFW recursion to prove the latter. In 6d we provide a complete derivation of the standard and hidden symmetries of the tree-level superamplitudes of N=(1,1) SYM theory, again using the BCFW recursion to prove the dual conformal symmetry. Furthermore, we demonstrate that compact analytical formulae for tree-superamplitudes in N=(1,1) SYM can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation. We derive compact manifestly dual conformal representations of the five- and six-point superamplitudes as well as arbitrary multiplicity formulae valid for certain classes of superamplitudes related to ultra-helicity-violating massive amplitudes in 4d. We study massive tree superamplitudes on the Coulomb branch of the N=4 SYM theory from dimensional reduction of the massless superamplitudes of the six-dimensional N=(1,1) SYM theory. We exploit this correspondence to construct the super-Poincare and enhanced dual conformal symmetries of massive tree superamplitudes in N=4 SYM theory which are shown to close into a finite dimensional algebra of Yangian type. Finally, we address the fascinating possibility of uplifting massless 4d superamplitudes to 6d massless superamplitudes proposed by Huang. We confirm the uplift for multiplicities up to eight but show that finding the uplift is highly non-trivial and in fact not of a practical use for multiplicities larger than five.
Motivated by the notorious difficulties in determining the first quantum corrections to the spectrum of short strings in AdS_5xS^5 from first principles, we study closed bosonic strings in this background employing a static gauge. In this gauge the w orld-sheet Hamiltonian density is constant along the extension of the string and directly proportional to the square of the spacetime energy. We quantize this system in a minisuperspace approach, in which we consider only a single AdS_5 string mode excitation next to an arbitrary particle like zero-mode contribution in the full AdS_5xS^5 background. We determine the quantum spectrum using this method to the next-to-next-to-leading order in the large t Hooft coupling expansion. We argue for an ordering prescription which should arise from supersymmetrization and indeed recover the integrability based predictions for the spectrum of the lightest excitation, dual to the Konishi field scaling dimensions. The higher excitations fail to agree, but this is shown to be a consequence of the string mode truncation employed. Despite this simple setup, our system reveals intriguing features, such as a close connection to particles in AdS_6, classical integrability and preservation of the isometries of AdS_5xS^5 at the quantum level.
We study a new class of inhomogeneous pp-wave solutions with 8 unbroken supersymmetries in D=11 supergravity. The 9 dimensional transverse space is Euclidean and split into 3 and 6 dimensional subspaces. The solutions have non-constant gauge flux, wh ich are described in terms of an arbitrary holomorphic function of the complexified 6 dimensional space. The supermembrane and matrix theory descriptions are also provided and we identify the relevant supersymmetry transformation rules. The action also arises through a dimensional reduction of N=1, D=4 supersymmetric Yang-Mills theory coupled to 3 gauge adjoint and chiral multiplets, whose interactions are determined by the holomorphic function of the supergravity solution now constituting the superpotential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا