ترغب بنشر مسار تعليمي؟ اضغط هنا

We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second -nearest-neighbor hopping strength that maximizes the $d_{x^2-y^2}$ superconducting transition temperature. We find in all cases that the optimal transition temperature occurs at intermediate coupling strength, and is suppressed at strong and weak interaction strengths. Similarly, superconducting fluctuations are strongest at intermediate doping and suppressed towards large doping and half-filling. We find a change in sign of the vertex contributions to $d_{xy}$ superconductivity from repulsive near half filling to attractive at large doping. $p$-wave superconductivity is not found at the parameters we study, and $s$-wave contributions are always repulsive. For negative second-nearest-neighbor hopping the optimal transition temperature shifts towards the electron-doped side in opposition to the van Hove singularity which moves towards hole doping. We surmise that an increase of the local interaction of the electron-doped compounds would increase $T_c$.
74 - J.P.F. LeBlanc 2014
We propose a hybridization phenomenology to describe the pseudogap state of the underdoped cuprates. We show how a momentum independent pseudogap opens asymmetrically from the Fermi-surface but symmetric to the zeroes of the hybridized bonding disper sion, which results in false d-wave characteristics of the pseudogap at the Fermi level. By comparing against a d-wave form factor we illustrate the difficulty in identifying a momentum independent order in momentum averaged quantities such as the electronic Raman response. We identify a suppression in the single-particle density of states which produces a hump feature which should be observable experimentally in tunnelling $dI/dV$ spectra and distinguishes the s-wave and d-wave ordering scenarios.
Hexagonal warping provides an anisotropy to the dispersion curves of the helical Dirac fermions that exist at the surface of a topological insulator. A sub-dominant quadratic in momentum term leads to an asymmetry between conduction and valence band. A gap can also be opened through magnetic doping. We show how these various modifications to the Dirac spectrum change the polarization function of the surface states and employ our results to discuss their effect on the plasmons. In the long wavelength limit, the plasmon dispersion retains its square root dependence on its momentum, $boldsymbol{q}$, but its slope is modified and it can acquire a weak dependence on the direction of $boldsymbol{q}$. Further, we find the existence of several plasmon branches, one which is damped for all values of $boldsymbol{q}$, and extract the plasmon scattering rate for a representative case.
The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the res onating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, $x$, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains $1+x$ hole states) to the Luttinger pocket (which contains $x$ hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا