ترغب بنشر مسار تعليمي؟ اضغط هنا

To explore the origin of the Fermi level pinning in germanium we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples w ith donors as majority dopants the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending does not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy and spectroscopy.
Surface conductance measurements on p-type doped germanium show a small but systematic change to the surface conductivity at different length scales. This effect is independent of the structure of the surface states. We interpret this phenomenon as a manifestation of conductivity changes beneath the surface. This hypothesis is confirmed by an analysis of the classical current flow equation. We derive an integral formula for calculating of the effective surface conductivity as a function of the distance from a point source. Furthermore we derive asymptotic values of the surface conductivity at small and large distances. The actual surface conductivity can only be sampled close to the current source. At large distances, the conductivity measured on the surface corresponds to the bulk value.
108 - Jakub Lis 2011
In this paper we investigate the Q-ball Ansatz in the baby Skyrme model. First, the appearance of peakons, i.e. solutions with extremely large absolute values of the second derivative at maxima, is analyzed. It is argued that such solutions are intri nsic to the baby Skyrme model and do not depend on the detailed form of a potential used in calculations. Next, we concentrate on compact non spinning Q-balls. We show the failure of a small parameter expansion in this case. Finally, we explore the existence and parameter dependence of Q-ball solutions.
143 - Jakub Lis 2009
The regularized signum-Gordon potential has a smooth minimum and is linear in the modulus of the field value for higher amplitudes. The Q-ball solutions in this model are investigated. Their existence for charges large enough is demonstrated. In thre e dimensions numerical solutions are presented and the absolute stability of large Q-balls is proved. It is also shown, that the solutions of the regularized model approach uniformly the solution of the unregularized signum-Gordon model. From the stability of Q-balls in the regularized model follows the stability of the solutions in the original theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا