ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - J. Nordin , D. Rubin , J. Richard 2013
Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrati ons will be crucial when next generation HST cluster surveys (e.g. FRONTIER) provide magnification maps that will, in turn, form the basis for the exploration of the high redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of type SN Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at $sim5sigma$ significance (SN-L2). We conducted this as a blind study to avoid fine tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of $0.09 pm 0.09^{stat} pm 0.05^{sys}$ mag. This impressive agreement suggests no tension between cluster mass models and high redshift standardized SNe Ia. However, the measured statistical dispersion of $sigma_{mu}=0.21$ mag appeared large compared to the dispersion expected based on statistical uncertainties ($0.14$). Further work with the supernova and cluster lensing models, post unblinding, reduced the measured dispersion to $sigma_{mu}=0.12$. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.
160 - J. Nordin , L. Ostman , A. Goobar 2010
Aims: Spectroscopic observations of Type Ia supernovae obtained at the New Technology Telescope (NTT) and the Nordic Optical Telescope (NOT), in conjunction with the SDSS-II Supernova Survey, are analysed. We use spectral indicators measured up to a month after the lightcurve peak luminosity to characterise the supernova properties, and examine these for potential correlations with host galaxy type, lightcurve shape, colour excess, and redshift. Methods: Our analysis is based on 89 Type Ia supernovae at a redshift interval z = 0.05 - 0.3, for which multiband SDSS photometry is available. A lower-z spectroscopy reference sample was used for comparisons over cosmic time. We present measurements of time series of pseudo equivalent widths and line velocities of the main spectral features in Type Ia supernovae. Results: Supernovae with shallower features are found predominantly among the intrinsically brighter slow declining supernovae. We detect the strongest correlation between lightcurve stretch and the Si ii 4000 absorption feature, which also correlates with the estimated mass and star formation rate of the host galaxy. We also report a tentative correlation between colour excess and spectral properties. If confirmed, this would suggest that moderate reddening of Type Ia supernovae is dominated by effects in the explosion or its immediate environment, as opposed to extinction by interstellar dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا