ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an investigation of the transmission spectrum of the 6.5 M_earth planet GJ1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT+ FORS and Magellan+MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planets transmission spectrum from 0.61 to 0.85 micron, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 micron with the VLT+HAWKI. We combined these data with results from a re-analysis of previously published FORS data from 0.78 to 1.00 micron using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 micron. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1 sigma. The planets atmosphere must either have at least 70% water by mass or optically thick high-altitude clouds or haze to be consistent with the data.
Ribas and collaborators have recently proposed that an additional, ~5 M_earth planet orbits the transiting planet host star GJ436. Long-term dynamical interactions between the two planets leading to eccentricity excitation might provide an explanatio n for the transiting planets unexpectedly large orbital eccentricity. In this paper we examine whether the existence of such a second planet is supported by the available observational data when the short-term interactions that would result from its presence are accounted for. We find that the model for the system suggested by Ribas and collaborators lead to predictions that are strongly inconsistent with the measured host star radial velocities, transiting planet primary and secondary eclipse times, and transiting planet orbital inclinations. A search for an alternative two planet model that is consistent with the data yields a number of plausible solutions, although no single one stands out as particularly unique by giving a significantly better fit to the data than the nominal single planet model. We conclude from this study that Ribas and collaborators general hypothesis of an additional short-period planet in the GJ436 system is still plausible, but that there is not sufficient evidence to support their claim of a planet detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا