ترغب بنشر مسار تعليمي؟ اضغط هنا

We study dielectron production in proton-proton collisions at top RHIC beam energy within an extended statistical hadronization model. The invariant mass spectrum of correlated dielectron pairs is evaluated in the low invariant mass region and calcul ated results are compared with the PHENIX experiment. The model is found to be able to describe the data very well up to invariant masses of 1 GeV with few adjustable parameters.
We study dilepton production in proton-proton, Cu+Cu as well as in Au+Au collisions at the center-of-mass energy 200 GeV per participating nucleon pair within an extended statistical hadronization model. In extension to earlier studies we incorporate transport calculations for an estimate of uncorrelated e+e- -pairs from semileptonic D meson decays. While the invariant mass spectrum of dielectrons is well understood in the p+p collisions, severe discrepancies among different model scenarios based on hadronic degrees of freedom and recent data from the PHENIX Collaboration are found in heavy-ion collisions in the low mass region from 0.15 to 0.6 GeV as well as in the intermediate mass regime from 1.1 to 3 GeV when employing the standard dilepton sources. We investigate, furthermore, the background from correlated dileptons that are not emitted as a pair from a parent hadron but emerge from semileptonic decays of two correlated daughter hadrons. Our calculations suggest a sizeable contribution of such sources in central heavy-ion collisions in the low mass region. However, even the upper limits of our calculations are found to be far below the dilepton mass spectra of the PHENIX Collaboration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا