ترغب بنشر مسار تعليمي؟ اضغط هنا

31 - J.D. Vergados 2015
The recent WMAP and Planck data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Many extensions of the standard model provide dark matter candidates, in particular Weakly I nteracting Massive Particles (WIMPs). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Examples considered previously were the first excited states of $^{127}$I and $^{129}$Xe. We examine here $^{83}$Kr, which offers some kinematical advantages and is currently considered as a possible target. We find appreciable branching ratios for the inelastic scattering mediated by the spin cross sections, with an inelastic event rate of $4.4times 10^{-4}$kg$^{-1}$d$^{-1}$. So, the extra signature of the gamma ray following the de-excitation of these states can, in principle, be exploited experimentally. A brief discussion of the experimental feasibility is given
108 - J.D. Vergados 2013
We consider the possibility of detecting relic anti-neutrinos by their resonant absorption in a nucleus, which can undergo electron capture. This possibility appears quite realistic in view of recent developments in Penning Trap Mass Spectrometry and cryogenic micro-calorimetry.
46 - J.D. Vergados 2013
The recent WMAP and Planck data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Many extensions of the standard model provide dark matter candidates, in particular Weakly I nteracting Massive Particles (WIMPs). %Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). Thus the direct dark matter detection is central to particle physics and cosmology. Most of the research on this issue has hitherto focused on the detection of the recoiling nucleus. In this paper we study transitions to the excited states, possible in some nuclei, which have sufficiently low lying excited states. Good examples are the first excited states of I-127 and Xe-129. %focusing on the first excited state at 50 keV of Iodine A=127. We find appreciable branching ratios for the inelastic scattering mediated by the spin cross sections. %find that the transition rate to this excited state is about 5 %percent of the transition to the ground state for low mass WIMPS, but the branching ratio can be much larger in the case pf heaver WIMPS. So, in principle, the extra signature of the gamma ray following the de-excitation of these states can, in principle, be exploited experimentally.
Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining t he absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.
102 - J.D. Vergados 2012
The effect of some possible non standard WIMP velocity distributions, like the Debris Flows recently proposed, on the direct dark matter detection rates is investigated. We find that such distributions may be deciphered from the data, especially if t he time variation of the event rates due to the annual motion of the Earth is observed
The differential event rate for direct detection of dark matter, both the time averaged and the modulated one due to the motion of the Earth, are discussed. The calculations focus on relatively light cold dark matter candidates (WIMP) and low energy transfers. It is shown that for sufficiently light WIMPs the extraction of relatively large nucleon cross sections is possible. Furthermore for some WIMP masses the modulation amplitude may change sign, meaning that, in such a case, the maximum rate may occur six months later than naively expected. This effect can be exploited to yield information about the mass of the dark matter candidate, if and when the observation of the modulation of the event rate is established.
66 - J.D. Vergados 2011
It is shown that the new neutrino with a high mass squared difference and a small mixing angle should reveal itself in the oscillometry measurements. For a judicious monochromatic neutrino source the new oscillation length $L_{42}$ is expected shorte r than 1.5 m. Thus the needed measurements can be implemented with a gaseous spherical TPC of modest dimensions with a very good energy and position resolution. The best candidates for oscillometry are discussed and the sensitivity to the mixing angle $theta_{14}$ has been estimated: $sin^2{(2theta_{14})}$=0.05 (99{%}) for two months of data handling with $^{51}$Cr.
403 - J.D. Vergados 2011
It is shown that, if the new neutrino implied by the Reactor Neutrino Anomaly exists and is in fact characterized by the suggested relatively high mass squared difference and reasonably large mixing angle, it should clearly reveal itself in the oscil lometry measurements. For a judicious neutrino source the new oscillation length L14 is expected shorter than 3m. Thus the needed measurements can be implemented with a gaseous spherical TPC of modest dimensions with a very good energy and position resolution, detecting nuclear recoils following the coherent neutrino-nucleus elastic scattering. The best candidates for oscillometry, yielding both monochromatic neutrinos as well as antineutrinos, are discussed. A sensitivity in the mixing angle theta14, (sin(2theta14))^2=0.1 (99 %), can be reached after a few months of data handling.
32 - J. D. Vergados 2011
The detection of galactic supernova (SN) neutrinos represents one of the future frontiers of low-energy neutrino physics and astrophysics. The neutron coherence of neutral currents (NC) allows quite large cross sections in the case of neutron rich ta rgets, which can be exploited in detecting earth and sky neutrinos by measuring nuclear recoils. A core-collapse supernova represents one of the most powerful source of (anti)neutrinos in the Universe. These (NC) cross sections are not dependent on flavor
57 - J.D. Vergados 2010
In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L23, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to theta13, one can measure or set a better limit on the unknown parameter theta13. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا