ترغب بنشر مسار تعليمي؟ اضغط هنا

145 - J. Orenstein , J. S. Dodge 2015
Time-resolved terahertz time-domain spectroscopy (THz-TDS) is an ideal tool for probing photoinduced nonequilibrium metallic and superconducting states. Here, we focus on the interpretation of the two-dimensional response function $Sigma(omega;t)$ th at it measures, examining whether it provides an accurate snapshot of the instantaneous optical conductivity, $sigma(omega;t)$. For the Drude model with a time-dependent carrier density, we show that $Sigma(omega;t)$ is not simply related to $sigma(omega;t)$. The difference in the two response functions is most pronounced when the momentum relaxation rate of photocarriers is long, as would be the case in a system that becomes superconducting following pulsed photoexcitation. From the analysis of our model, we identify signatures of photoinduced superconductivity that could be seen by time-resolved THz-TDS.
Energy- and time-resolved spectroscopy reveals a photoinduced softening of the charge-transfer gap in the insulating copper oxide Sr2CuO2Cl2 that indicates rapid and efficient photoproduction of optical phonons. By relating the pump-probe signal ampl itude to the thermal difference spectrum, we estimate that eleven to twenty optical phonons are created for every one 3 eV photon. Assuming relaxation to the optical absorption edge at 1.5 eV, this corresponds to 70-130 meV per boson. While the lower limit is consistent with relaxation exclusively through optical phonons, the upper limit suggests a significant role for magnetic excitations. We observe a photoinduced bleaching of the gap excitation that we associate with phase space filling, and estimate the excluded area of the photoexcited state to be about nine copper oxide plaquettes. The temporal decay of the pump-probe signal is consistent with anharmonic phonon decay.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا