ترغب بنشر مسار تعليمي؟ اضغط هنا

The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and gamma-ray emission in a large sample of blazars. We find that the gamma-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within 2 months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong gamma-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of gamma-ray emission.
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet er (mm) flux density and gamma-ray photon flux is different for different types of blazars. The flux relation between the two bands is positively correlated for quasars and does no exist for BLLacs. Furthermore, we find that the levels of gamma-ray emission in high states depend on the phase of the high frequency radio flare, with the brightest gamma-ray events coinciding with the initial stages of a mm flare. The mean observed delay from the beginning of a mm flare to the peak of the gamma-ray emission is about 70 days, which places the average location of the gamma-ray production at or downstream of the radio core. We discuss alternative scenarios for the production of gamma-rays at distances of parsecs along the length of the jet
89 - J. Leon-Tavares 2011
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet er (mm) flux density and gamma-ray photon flux is different for different types of blazars. The flux relation between the two bands is positively correlated for quasars and does not exist for BLLacs. Furthermore, we find that the levels of gamma-ray emission in high states depend on the phase of the high frequency radio flare, with the brightest gamma-ray events coinciding with the initial stages of a mm flare. The mean observed delay from the beginning of a mm flare to the peak of the gamma-ray emission is about 70 days, which places the average location of the gamma-ray production at or downstream of the radio core. We discuss alternative scenarios for the production of gamma-rays at distances of parsecs along the length the jet.
110 - J. Leon-Tavares 2010
We investigate the relationship between black hole mass (MBH) and Doppler boosted emission for BL Lacertae type objects (BL Lacs) detected in the SDSS and FIRST surveys. The synthesis of stellar population and bidimensional decomposition methods allo ws us to disentangle the components of the host galaxy from that of the nuclear black hole in their optical spectra and images, respectively. We derive estimates of black hole masses via stellar velocity dispersion and bulge luminosity. We find that masses delivered by both methods are consistent within errors. There is no difference between the black hole mass ranges for high-synchrotron peaked BL Lacs (HBL) and low-synchrotron peaked BL Lacs (LBL). A correlation between the black-hole mass and radio, optical and X-ray luminosity has been found at a high significance level. The optical-continuum emission correlates with the jet luminosity as well. Besides, X-ray and radio emission are correlated when HBLs and LBLs are considered separately. Results presented in this work: (i) show that the black hole mass does not decide the SED shapes of BL Lacs, (ii) confirm that X-ray and optical emission is associated to the relativistic jet, and (iii) present evidence of a relation between MBH and Doppler boosted emission, which among BL Lacs may be understood as a close relation between faster jets and more massive black holes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا