ترغب بنشر مسار تعليمي؟ اضغط هنا

The AllWISE processing pipeline has measured motions for all objects detected on WISE images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements p ossible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3,525 have motions that can be independently confirmed from earlier 2MASS images yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a subdwarf gap at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list -- WISEA J154045.67-510139.3 -- is a bright (J ~ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman (2014). While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products.
We present the discovery of a very cold, very low mass, nearby brown dwarf using data from the NASA Wide-field Infrared Survey Explorer (WISE). The object, WISE J064723.23-623235.5, has a very red WISE color of W1-W2 > 3.77 mag and a very red Spitzer Space Telescope color of ch1-ch2 = 2.82+/-0.09 mag. In J_MKO-ch2 color (7.58+/-0.27 mag) it is one of the two or three reddest brown dwarfs known. Our grism spectrum from the Hubble Space Telescope (HST) confirms it to be the seventeenth Y dwarf discovered, and its spectral type of Y1+/-0.5 makes it one of the four latest-type Y dwarfs classified. Astrometric imaging from Spitzer and HST, combined with data from WISE, provides a preliminary parallax of pi = 115+/-12 mas (d = 8.7+/-0.9 pc) and proper motion of mu = 387+/-25 mas/yr based on 2.5 years of monitoring. The spectrum implies a blue J-H color, for which model atmosphere calculations suggest a relatively low surface gravity. The best fit to these models indicates an effective temperature of 350-400K and a mass of ~5-30 M_Jup. Kinematic analysis hints that this object may belong to the Columba moving group, which would support an age of ~30 Myr and thus an even lower mass of <2 M_Jup, but verification would require a radial velocity measurement not currently possible for a J=22.7 mag brown dwarf.
In our effort to complete the census of low-mass stars and brown dwarfs in the immediate Solar Neighborhood, we present spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by t he Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on twelve candidates selected using WISE data but previously published elsewhere. The new discoveries include fifteen M dwarfs, seventeen L dwarfs, five T dwarfs, and five objects of other type. Among these discoveries is a newly identified unusually red L dwarf (WISE J223527.07+451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L+T binary systems, and a T9 dwarf (WISE J124309.61+844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012) may be a low-gravity object and hence young and potentially low mass (< 25 MJup).
We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral typ es T and Y. We find that the T/Y boundary roughly coincides with the spot where the J-H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 um) and W2 (4.6 um) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 parsecs of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < alpha < 0.0; however, a power-law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.
We present ground-based spectroscopic verification of six Y dwarfs (see Cushing et al), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spe ctral types greater than or equal to T6, six of which have been announced earlier in Mainzer et al and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. After deriving an absolute WISE 4.6 um (W2) magnitude vs. spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at 2.8 (+1.3,-0.6) pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another ten objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of roughly 4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from Spitzer/IRAC allow us to calculate proper motions and tangential velocities for roughly one half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss constraints on both the functional form of the mass function and the low-mass limit of star formation.
We have conducted a 4030-square-deg near-infrared proper motion survey using multi-epoch data from the Two Micron All-Sky Survey (2MASS). We find 2778 proper motion candidates, 647 of which are not listed in SIMBAD. After comparison to DSS images, we find that 107 of our proper motion candidates lack counterparts at B-, R-, and I-bands and are thus 2MASS-only detections. We present results of spectroscopic follow-up of 188 targets that include the infrared-only sources along with selected optical-counterpart sources with faint reduced proper motions or interesting colors. We also establish a set of near-infrared spectroscopic standards with which to anchor near-infrared classifications for our objects. Among the discoveries are six young field brown dwarfs, five red L dwarfs, three L-type subdwarfs, twelve M-type subdwarfs, eight blue L dwarfs, and several T dwarfs. We further refine the definitions of these exotic classes to aid future identification of similar objects. We examine their kinematics and find that both the blue L and red L dwarfs appear to be drawn from a relatively old population. This survey provides a glimpse of the kinds of research that will be possible through time-domain infrared projects such as the UKIDSS Large Area Survey, various VISTA surveys, and WISE, and also through z- or y-band enabled, multi-epoch surveys such as Pan-STARRS and LSST.
Using a large sample of optical spectra of late-type dwarfs, we identify a subset of late-M through L field dwarfs that, because of the presence of low-gravity features in their spectra, are believed to be unusually young. From a combined sample of 3 03 field L dwarfs, we find observationally that 7.6+/-1.6% are younger than 100 Myr. This percentage is in agreement with theoretical predictions once observing biases are taken into account. We find that these young L dwarfs tend to fall in the southern hemisphere (Dec < 0 deg) and may be previously unrecognized, low-mass members of nearby, young associations like Tucana-Horologium, TW Hydrae, beta Pictoris, and AB Doradus. We use a homogeneously observed sample of roughly one hundred and fifty 6300-10000 Angstrom spectra of L and T dwarfs taken with the Low-Resolution Imaging Spectrometer at the W. M. Keck Observatory to examine the strength of the 6708-A Li I line as a function of spectral type and further corroborate the trends noted by Kirkpatrick et al. (2000). We use our low-gravity spectra to investigate the strength of the Li I line as a function of age. The data weakly suggest that for early- to mid-L dwarfs the line strength reaches a maximum for a few 100 Myr, whereas for much older (few Gyr) and much younger (<100 Myr) L dwarfs the line is weaker or undetectable. We show that a weakening of lithium at lower gravities is predicted by model atmosphere calculations, an effect partially corroborated by existing observational data. Larger samples containing L dwarfs of well determined ages are needed to further test this empirically. If verified, this result would reinforce the caveat first cited in Kirkpatrick et al. (2006) that the lithium test should be used with caution when attempting to confirm the substellar nature of the youngest brown dwarfs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا