ترغب بنشر مسار تعليمي؟ اضغط هنا

387 - Chris Heunen 2016
Compact categories have lately seen renewed interest via applications to quantum physics. Being essentially finite-dimensional, they cannot accomodate (co)limit-based constructions. For example, they cannot capture protocols such as quantum key distr ibution, that rely on the law of large numbers. To overcome this limitation, we introduce the notion of a compactly accessible category, relying on the extra structure of a factorisation system. This notion allows for infinite dimension while retaining key properties of compact categories: the main technical result is that the choice-of-duals functor on the compact part extends canonically to the whole compactly accessible category. As an example, we model a quantum key distribution protocol and prove its correctness categorically.
128 - Michael Shulman 2015
We study idempotents in intensional Martin-Lof type theory, and in particular the question of when and whether they split. We show that in the presence of propositional truncation and Voevodskys univalence axiom, there exist idempotents that do not s plit; thus in plain MLTT not all idempotents can be proven to split. On the other hand, assuming only function extensionality, an idempotent can be split if and only if its witness of idempotency satisfies one extra coherence condition. Both proofs are inspired by parallel results of Lurie in higher category theory, showing that ideas from higher category theory and homotopy theory can have applications even in ordinary MLTT. Finally, we show that although the witness of idempotency can be recovered from a splitting, the one extra coherence condition cannot in general; and we construct the type of fully coherent idempotents, by splitting an idempotent on the type of partially coherent ones. Our results have been formally verified in the proof assistant Coq.
Session types are used to describe and structure interactions between independent processes in distributed systems. Higher-order types are needed in order to properly structure delegation of responsibility between processes. In this paper we show t hat higher-order web-service contracts can be used to provide a fully-abstract model of recursive higher-order session types. The model is set-theoretic, in the sense that the meaning of a contract is given in terms of the set of contracts with which it complies. The proof of full-abstraction depends on a novel notion of the complement of a contract. This in turn gives rise to an alternative to the type duality commonly used in systems for type-checking session types. We believe that the notion of complement captures more faithfully the behavioural intuition underlying type duality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا