ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the field and temperature behavior of the narrow Electron Spin Resonance (ESR) response in YbRh2Si2 well below the single ion Kondo temperature. The ESR g factor reflects a Kondo-like field and temperature evolution of the Yb3+ magnetism. Measurements towards low temperatures (>0.5K) have shown distinct crossover anomalies of the ESR parameters upon approaching the regime of a well defined heavy Fermi liquid. Comparison with the field dependence of specific heat and electrical resistivity reveal that the ESR parameters can be related to quasiparticle mass and cross section and, hence, contain inherent heavy electron properties.
50 - A.S. Kutuzov 2008
We consider the local properties of the Yb3+ ion in the crystal electric field in the Kondo lattice compounds YbRh2Si2 and YbIr2Si2. On this basis we have calculated the magnetic susceptibility taking into account the Kondo interaction in the simples t molecular field approximation. The resulting Curie-Weiss law and Van Vleck susceptibilities could be excellently fitted to experimental results in a wide temperature interval where thermodynamic and transport properties show non-Fermi-liquid behaviour for these materials.
Below the Kondo temperature the heavy Fermion compound YbRh$_{2}$Si$_{2}$ shows a well defined Electron Spin Resonance (ESR) with local Yb$^{3+}$ properties. We report a detailed analysis of the ESR intensity which gives information on the number of ESR active centers relative to the ESR of well localized Yb$^{3+}$ in YPd$_3$:Yb. The ESR lineshape is investigated regarding contributions from itinerant centers. From the ESR of monoisotopic $^{174}$YbRh$_{2}$Si$_{2}$ we could exclude unresolved hyperfine contributions to the lineshape.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا