ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine $8mu$m IRAC images of the grand design two-arm spiral galaxies M81 and M51 using a new method whereby pitch angles are locally determined as a function of scale and position, in contrast to traditional Fourier transform spectral analyses w hich fit to average pitch angles for whole galaxies. The new analysis is based on a correlation between pieces of a galaxy in circular windows of $(ln R, theta)$ space and logarithmic spirals with various pitch angles. The diameter of the windows is varied to study different scales. The result is a best-fit pitch angle to the spiral structure as a function of position and scale, or a distribution function of pitch angles as a function of scale for a given galactic region or area. We apply the method to determine the distribution of pitch angles in the arm and interarm regions of these two galaxies. In the arms, the method reproduces the known pitch angles for the main spirals on a large scale, but also shows higher pitch angles on smaller scales resulting from dust feathers. For the interarms, there is a broad distribution of pitch angles representing the continuation and evolution of the spiral arm feathers as the flow moves into the interarm regions. Our method shows a multiplicity of spiral structures on different scales, as expected from gas flow processes in a gravitating, turbulent and shearing interstellar medium. We also present results for M81 using classical 1D and 2D Fourier transforms, together with a new correlation method, which shows good agreement with conventional 2D Fourier transforms.
NGC3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and a search for evidence of recent interaction b ased on new UBVRI Halpha and JHK images and on archival Halpha Fabry-Perot and HI VLA data. From a coupled 1D/2D GALFIT bulge/bar/disk decomposition an (B/D ~ 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A NIR estimate of the bar strength <Q_T{max}(R)> = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) optical and NIR CAS indexes (2) the stellar (NIR) and gaseous (Halpha, HI) A_1 Fourier mode amplitudes and (3) the HI integrated profile and HI mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the Local Universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A_1 mode amplitudes suggesting that the gas has been recently perturbed. Our search for (1) faint stellar structures in the outer regions (up to u_R ~ 26 mag arcsec^{-2}), (2) (Halpha) star-forming satellite galaxies and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted using recent numerical simulations to constrain a tidal event with an LMC like galaxy to some dynamical times in the past or to a current very low mass, gas rich accretion. We conclude that a cold accretion mode (gas and small/dark galaxies) may be responsible of the nuclear activity and peculiar (young stars and gas) morphology regardless of the highly isolated environment. Black hole growth in bulgeless galaxies may be triggered by cosmic smooth mass accretion.
We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of pars ecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plane velocities being much more important than vertical ones. In contrast, at small scales, the motions become more isotropic.
Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70 and 160 microns observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k . The break occurs at 1/k ~ 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum covers ~ 3.5 orders of magnitude and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves and bars, presumably cause the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks cause the high-k structure in a 3D geometry. This transition in dimensionality corresponds to the observed change in power spectrum slope. A companion paper models the observed power-law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا