ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a new method for the approximate solution of the Lyapunov equation with rank-$1$ right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the c onnection between the Lyapunov equation, solution of systems of linear ODEs and alternating least squares method for low-rank approximation. The numerical experiments confirm the effectiveness of our approach.
A new fast algebraic method for obtaining an $mathcal{H}^2$-approximation of a matrix from its entries is presented. The main idea behind the method is based on the nested representation and the maximum-volume principle to select submatrices in low-r ank matrices. A special iterative approach for the computation of so-called representing sets is established. The main advantage of the method is that it uses only the hierarchical partitioning of the matrix and does not require special proxy surfaces to be selected in advance. The numerical experiments for the electrostatic problem and for the boundary integral operator confirm the effectiveness and robustness of the approach. The complexity is linear in the matrix size and polynomial in the ranks. The algorithm is implemented as an open-source Python package that is available online.
We consider the problem of computing approximate solution of Poisson equation in the low-parametric tensor formats. We propose a new algorithm to compute the solution based on the cross approximation algorithm in the frequency space, and it has bette r complexity with respect to ranks in comparison with standard algorithms, which are based on the exponential sums approximation. To illustrate the effectiveness of our solver, we incorporate into a Uzawa solver for the Stokes problem on semi-staggered grid as a subsolver. The resulting solver outperforms the standard method for $n geq 256$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا