ترغب بنشر مسار تعليمي؟ اضغط هنا

The interaction of an E/A=70 - MeV 7Be beam with a Be target was used to populate levels in 6Be following neutron knockout reactions. The three-body decay of the ground and first excited states into the alpha+p+p exit channel were detected in the Hig h Resolution Array. Precise three-body correlations extracted from the experimental data allowed us to obtain insight into the mechanism of the three-body democratic decay. The correlation data are in a good agreement with a three-cluster-model calculation and thus validate this theoretical approach over a broad energy range.
The 0+ ground state of the 10He nucleus produced in the 3H(8He,p)10He reaction was found at about $2.1pm0.2$ MeV (Gamma ~ 2 MeV) above the three-body 8He+n+n breakup threshold. Angular correlations observed for 10He decay products show prominent inte rference patterns allowing to draw conclusions about the structure of low-energy excited states. We interpret the observed correlations as a coherent superposition of the broad 1- state having a maximum at energy 4-6 MeV and the 2+ state above 6 MeV, setting both on top of the 0+ state tail. This anomalous level ordering indicates that the breakdown of the N=8 shell known in 12Be thus extends also to the 10He system.
The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-l ife, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.
By using the 1H(6Li,6Be)n charge-exchange reaction, continuum states in 6Be were populated up to E_t=16 MeV, E_t being the 6Be energy above its three-body decay threshold. In kinematically complete measurements performed by detecting alpha+p+p coinci dences, an E_t spectrum of high statistics was obtained, containing approximately ~5x10^6 events. The spectrum provides detailed correlation information about the well-known 0^+ ground state of 6Be at E_t=1.37 MeV and its 2^+ state at E_t=3.05 MeV. Moreover, a broad structure extending from 4 to 16 MeV was observed. It contains negative parity states populated by Delta L=1 angular momentum transfer without other significant contributions. This structure can be interpreted as a novel phenomenon, i.e. the isovector soft dipole mode associated with the 6Li ground state. The population of this mode in the charge-exchange reaction is a dominant phenomenon for this reaction, being responsible for about 60% of the cross section obtained in the measured energy range.
Unknown isotope 26S, expected to decay by two-proton (2p) emission, was studied theoretically and was searched experimentally. The structure of this nucleus was examined within the relativistic mean field (RMF) approach. A method for taking into acco unt the many-body structure in the three-body decay calculations was developed. The results of the RMF calculations were used as an input for the three-cluster decay model worked out to study a possible 2p decay branch of this nucleus. The experimental search for 26S was performed in fragmentation reactions of a 50.3 A MeV 32S beam. No events of 26S or 25P (a presumably proton-unstable subsystem of 26S) were observed. Based on the obtained production systematics an upper half-life limit of T_{1/2}<79 ns was established from the time-of-flight through the fragment separator. Together with the theoretical lifetime estimates for two-proton decay this gives a decay energy limit of Q_{2p}>640 keV for 26S. Analogous limits for 25P are found as T_{1/2}<38 ns and Q_{p}>110 keV. In the case that the one-proton emission is the main branch of the 26S decay a limit Q_{2p}>230 keV would follow for this nucleus. It is likely that 26S resides in the picosecond lifetime range and the further search for this isotope is prospective for the decay-in-flight technique.
Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 1000 fm. However, the precision of mo dern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss the extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only the long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the exactly solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of the screening by atomic electrons. We compare theoretical results with available experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا