ترغب بنشر مسار تعليمي؟ اضغط هنا

152 - I. Berentzen 2011
The dynamical evolution of stellar clusters is driven to a large extent by their environment. Several studies so far have considered the effect of tidal fields and their variations, such as, e.g., from giant molecular clouds, galactic discs, or spira l arms. In this paper we will concentrate on a tidal field whose effects on star clusters have not yet been studied, namely that of bars. We present a set of direct N-body simulations of star clusters moving in an analytic potential representing a barred galaxy. We compare the evolution of the clusters moving both on different planar periodic orbits in the barred potential and on circular orbits in a potential obtained by axisymmetrising its mass distribution. We show that both the shape of the underlying orbit and its stability have strong impact on the cluster evolution as well as the morphology and orientation of the tidal tails and the sub-structures therein. We find that the dissolution time-scale of the cluster in our simulations is mainly determined by the tidal forcing along the orbit and, for a given tidal forcing, only very little by the exact shape of the gravitational potential in which the cluster is moving.
This paper studies the formation and evolution of binary supermassive black holes (SMBHs) in rotating galactic nuclei, focusing on the role of stellar dynamics. We present the first N-body simulations that follow the evolution of the SMBHs from kilop arsec separations all the way to their final relativistic coalescence, and that can robustly be scaled to real galaxies. The N-body code includes post-Newtonian (PN) corrections to the binary equations of motion up to order 2.5; we show that the evolution of the massive binary is only correctly reproduced if the conservative 1PN and 2PN terms are included. The orbital eccentricities of the massive binaries in our simulations are often found to remain large until shortly before coalescence. This directly affects not only their orbital evolution rates, but has important consequences as well for the gravitational waveforms emitted during the relativistic inspiral. We estimate gravitational wave amplitudes when the frequencies fall inside the band of the (planned) Laser Interferometer Space Antennae (LISA). We find significant contributions -- well above the LISA sensitivity curve -- from the higher-order harmonics.
We present some preliminary results from recent numerical simulations that model the evolution of super-massive black hole (SMBH) binaries in galactic nuclei. Including the post-Newtonian terms for the binary system and adopting appropriate models fo r the galaxies allows us, for the first time, to follow the evolution of SMBH binaries from kpc scales down to the coalescence phase. We use our results to make predictions of the detectability of such events with the gravitational wave detector LISA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا