ترغب بنشر مسار تعليمي؟ اضغط هنا

We define the branched analog of SL(r,C)-opers and investigate their properties. For the usual SL(r,C)-opers, the underlying holomorphic vector bundle is independent of the opers. For the branched SL(r,C)-opers, the underlying holomorphic vector bund le depends on the oper. Given a branched SL(r,C)-oper, we associate to it another holomorphic vector bundle equipped with a logarithmic connection. This holomorphic vector bundle does not depend on the branched oper. We characterize the branched SL(r,C)-opers in terms of the logarithmic connections on this fixed holomorphic vector bundle.
119 - Indranil Biswas 2021
Let X be a compact connected Riemann surface of genus g > 0 equipped with a nonzero holomorphic 1-form. Let M denote the moduli space of semistable Higgs bundles on X of rank r and degree r(g-1)+1; it is a complex symplectic manifold. Using the trans lation structure on the open subset of X where the 1-form does not vanish, we construct a natural deformation quantization of a certain nonempty Zariski open subset of M.
Let ${mathcal B}_g(r)$ be the moduli space of triples of the form $(X,, K^{1/2}_X,, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g, geq, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector bundle on $X$ of rank $r$ and degree zero. We construct a $T^*{mathcal B}_g(r)$--torsor ${mathcal H}_g(r)$ over ${mathcal B}_g(r)$. This generalizes on the one hand the torsor over the moduli space of stable vector bundles of rank $r$, on a fixed Riemann surface $Y$, given by the moduli space of holomorphic connections on the stable vector bundles of rank $r$ on $Y$, and on the other hand the torsor over the moduli space of Riemann surfaces given by the moduli space of Riemann surfaces with a projective structure. It is shown that ${mathcal H}_g(r)$ has a holomorphic symplectic structure compatible with the $T^*{mathcal B}_g(r)$--torsor structure. We also describe ${mathcal H}_g(r)$ in terms of the second order matrix valued differential operators. It is shown that ${mathcal H}_g(r)$ is identified with the $T^*{mathcal B}_g(r)$--torsor given by the sheaf of holomorphic connections on the theta line bundle over ${mathcal B}_g(r)$.
The Quillen connection on ${mathcal L} rightarrow {mathcal M}_g$, where ${mathcal L}^*$ is the Hodge line bundle over the moduli stack of smooth complex projective curves curves ${mathcal M}_g$, $g geq 5$, is uniquely determined by the condition that its curvature is the Weil--Petersson form on ${mathcal M}_g$. The bundle of holomorphic connections on ${mathcal L}$ has a unique holomorphic isomorphism with the bundle on ${mathcal M}_g$ given by the moduli stack of projective structures. This isomorphism takes the $C^infty$ section of the first bundle given by the Quillen connection on ${mathcal L}$ to the $C^infty$ section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea b y restricting attention to connections on trivial vector bundles and replacing the fundamental group by a certain Lie algebra constructed from the regular forms. In more detail, we show that the differential Galois group is a certain ``closure of the aforementioned Lie algebra. This is then applied to construct connections on curves with prescribed differential Galois group.
We describe some results on moduli space of logarithmic connections equipped with framings on a $n$-pointed compact Riemann surface.
We study the branched holomorphic projective structures on a compact Riemann surface $X$ with a fixed branching divisor $S, =, sum_{i=1}^d x_i$, where $x_i ,in, X$ are distinct points. After defining branched ${rm SO}(3,{mathbb C})$--opers, we show t hat the branched holomorphic projective structures on $X$ are in a natural bijection with the branched ${rm SO}(3,{mathbb C})$--opers singular at $S$. It is deduced that the branched holomorphic projective structures on $X$ are also identified with a subset of the space of all logarithmic connections on $J^2((TX)otimes {mathcal O}_X(S))$ singular over $S$, satisfying certain natural geometric conditions.
We show that the character variety for a $n$-punctured oriented surface has a natural Poisson structure.
Let $X$ be a compact connected Riemann surface, $D, subset, X$ a reduced effective divisor, $G$ a connected complex reductive affine algebraic group and $H_x, subsetneq, G_x$ a Zariski closed subgroup for every $x, in, D$. A framed principal $G$--bun dle is a pair $(E_G,, phi)$, where $E_G$ is a holomorphic principal $G$--bundle on $X$ and $phi$ assigns to each $x, in, D$ a point of the quotient space $(E_G)_x/H_x$. A framed $G$--Higgs bundle is a framed principal $G$--bundle $(E_G,, phi)$ together with a section $theta, in, H^0(X,, text{ad}(E_G)otimes K_Xotimes{mathcal O}_X(D))$ such that $theta(x)$ is compatible with the framing $phi$ for every $x, in, D$. We construct a holomorphic symplectic structure on the moduli space $mathcal{M}_{FH}(G)$ of stable framed $G$--Higgs bundles. Moreover, we prove that the natural morphism from $mathcal{M}_{FH}(G)$ to the moduli space $mathcal{M}_{H}(G)$ of $D$-twisted $G$--Higgs bundles $(E_G,, theta)$ that forgets the framing, is Poisson. These results generalize cite{BLP} where $(G,, {H_x}_{xin D})$ is taken to be $(text{GL}(r,{mathbb C}),, {text{I}_{rtimes r}}_{xin D})$. We also investigate the Hitchin system for $mathcal{M}_{FH}(G)$ and its relationship with that for $mathcal{M}_{H}(G)$.
Let $Kbackslash G$ be an irreducible Hermitian symmetric space of noncompact type and $Gamma ,subset, G$ a closed torsionfree discrete subgroup. Let $X$ be a compact Kahler manifold and $rho, :, pi_1(X, x_0),longrightarrow, Gamma$ a homomorphism such that the adjoint action of $rho(pi_1(X, x_0))$ on $text{Lie}(G)$ is completely reducible. A theorem of Corlette associates to $rho$ a harmonic map $X, longrightarrow, Kbackslash G/Gamma$. We give a criterion for this harmonic map to be holomorphic. We also give a criterion for it to be anti--holomorphic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا