ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational consequences of the tidal disruption of stars by supermassive black holes (SMBHs) can enable us to discover quiescent SMBHs and constrain their mass function. Moreover, observing jetted TDEs (from previously non-active galaxies) provide s us with a new means of studying the early phases of jet formation and evolution in an otherwise pristine environment. Although several (tens) TDEs have been discovered since 1999, only two jetted TDEs have been recently discovered in hard X-rays, and only one, Swift J1644+57, has a precise localization which further supports the TDE interpretation. These events alone are not sufficient to address those science issues, which require a substantial increase of the current sample. Despite the way they were discovered, the highest discovery potential for {em jetted} TDEs is not held by current and up-coming X-ray instruments, which will yield only a few to a few tens events per year. In fact, the best strategy is to use the Square Kilometer Array to detect TDEs and trigger multi-wavelength follow-ups, yielding hundreds candidates per year, up to $z sim 2$. Radio and X-ray synergy, however, can in principle constrain important quantities such as the absolute rate of jetted TDEs, their jet power, bulk Lorentz factor, the black hole mass function, and perhaps discover massive black holes (MBH) with $<10^{5} M_{odot}$. Finally, when comparing SKA results with information from optical surveys like LSST, one can more directly constrain the efficiency of jet production.
We report the extraordinary gamma-ray activity (E>100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z=2.507) detected by AGILE between October and November 2010. The source experienced on October 14 a flux increase of a factor of ~ 12 with respect to its average value and kept brightest at this flux level (~ 500 x 10^{-8} ph cm^-2 sec^-1) for about 4 days. The 1-month gamma-ray light curve across the flare showed a mean flux F(E>100 MeV)= 200 x 10^{-8} ph cm^-2 sec^-1, which resulted in an enhancement by a factor of 4 with respect to the average value. Following the gamma-ray flare, the source was observed in NIR-Optical energy bands at the Cerro Tololo Inter-American Observatory and in X-rays by Swift/XRT and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in gamma-rays has not a significant counterpart at lower frequencies: no variation greater than a factor of ~ 1.5 resulted in NIR and X-ray energy bands. PKS 1830-211 is then a good gamma-ray only flaring blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.
We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3 during the first half of December 2007. This campaign involved AGILE, Spitzer, Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a broad band coverag e that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions.The 2-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM and by sparse observations in mid-Infrared and soft/hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift and Suzaku, respectively.The source was detected with an average flux of~250x10^{-8}ph cm^-2s^-1 above 100 MeV,typical of its flaring states.The simultaneous optical and gamma-ray monitoring allowed us to study the time-lag associated with the variability in the two energy bands, resulting in a possible ~1-day delay of the gamma-ray emission with respect to the optical one. From the simultaneous optical and gamma-ray fast flare detected on December 12, we can constrain the delay between the gamma-ray and optical emissions within 12 hours. Moreover, we obtain three Spectral Energy Distributions (SEDs) with simultaneous data for 2007 December 5, 13, 15, characterized by the widest multifrequency coverage. We found that a model with an external Compton on seed photons by a standard disk and reprocessed by the Broad Line Regions does not describe in a satisfactory way the SEDs of 2007 December 5, 13 and 15. An additional contribution, possibly from the hot corona with T=10^6 K surrounding the jet, is required to account simultaneously for the softness of the synchrotron and the hardness of the inverse Compton emissions during those epochs.
We present optical, X-ray, high energy ($lessapprox 30$ GeV) and very high energy ($gtrapprox 100$ GeV; VHE) observations of the high-frequency peaked blazar Mrk 421 taken between 2008 May 24 and June 23. A high energy $gamma$-ray signal was detected by AGILE with sqrt{TS}=4.5 on June 9--15, with $F(E>100 mathrm{MeV})= 42^{+14}_{-12}times 10^{-8}$ photons cm$^{-2}$ s$^{-1}$. This flaring state is brighter than the average flux observed by EGRET by a factor of $sim$3, but still consistent with the highest EGRET flux. In hard X-rays (20-60 keV) SuperAGILE resolved a 5-day flare (June 9-15) peaking at $sim$ 55 mCrab. SuperAGILE, RXTE/ASM and Swift/BAT data show a correlated flaring structure between soft and hard X-rays. Hints of the same flaring behavior are also detected in the simultaneous optical data provided by the GASP-WEBT. A Swift/XRT observation near the flaring maximum revealed the highest 2-10 keV flux ever observed from this source, of 2.6 $times 10^{-9}$ erg cm$^{-2}$ s$^{-1}$ (i.e. > 100 mCrab). A peak synchrotron energy of $sim$3 keV was derived, higher than typical values of $sim$0.5-1 keV. VHE observations with MAGIC and VERITAS on June 6-8 show the flux peaking in a bright state, well correlated with the X-rays. This extraordinary set of simultaneous data, covering a twelve-decade spectral range, allowed for a deep analysis of the spectral energy distribution as well as of correlated light curves. The $gamma$-ray flare can be interpreted within the framework of the synchrotron self-Compton model in terms of a rapid acceleration of leptons in the jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا