ترغب بنشر مسار تعليمي؟ اضغط هنا

A graph is $(d_1, ..., d_r)$-colorable if its vertex set can be partitioned into $r$ sets $V_1, ..., V_r$ so that the maximum degree of the graph induced by $V_i$ is at most $d_i$ for each $iin {1, ..., r}$. For a given pair $(g, d_1)$, the question of determining the minimum $d_2=d_2(g; d_1)$ such that planar graphs with girth at least $g$ are $(d_1, d_2)$-colorable has attracted much interest. The finiteness of $d_2(g; d_1)$ was known for all cases except when $(g, d_1)=(5, 1)$. Montassier and Ochem explicitly asked if $d_2(5; 1)$ is finite. We answer this question in the affirmative with $d_2(5; 1)leq 10$; namely, we prove that all planar graphs with girth at least $5$ are $(1, 10)$-colorable. Moreover, our proof extends to the statement that for any surface $S$ of Euler genus $gamma$, there exists a $K=K(gamma)$ where graphs with girth at least $5$ that are embeddable on $S$ are $(1, K)$-colorable. On the other hand, there is no finite $k$ where planar graphs (and thus embeddable on any surface) with girth at least $5$ are $(0, k)$-colorable.
104 - Ilkyoo Choi 2013
The choosability $chi_ell(G)$ of a graph $G$ is the minimum $k$ such that having $k$ colors available at each vertex guarantees a proper coloring. Given a toroidal graph $G$, it is known that $chi_ell(G)leq 7$, and $chi_ell(G)=7$ if and only if $G$ c ontains $K_7$. Cai, Wang, and Zhu proved that a toroidal graph $G$ without 7-cycles is 6-choosable, and $chi_ell(G)=6$ if and only if $G$ contains $K_6$. They also prove that a toroidal graph $G$ without 6-cycles is 5-choosable, and conjecture that $chi_ell(G)=5$ if and only if $G$ contains $K_5$. We disprove this conjecture by constructing an infinite family of non-4-colorable toroidal graphs with neither $K_5$ nor cycles of length at least 6; moreover, this family of graphs is embeddable on every surface except the plane and the projective plane. Instead, we prove the following slightly weaker statement suggested by Zhu: toroidal graphs containing neither $K^-_5$ (a $K_5$ missing one edge) nor 6-cycles are 4-choosable. This is sharp in the sense that forbidding only one of the two structures does not ensure that the graph is 4-choosable.
The vertex arboricity $a(G)$ of a graph $G$ is the minimum $k$ such that $V(G)$ can be partitioned into $k$ sets where each set induces a forest. For a planar graph $G$, it is known that $a(G)leq 3$. In two recent papers, it was proved that planar gr aphs without $k$-cycles for some $kin{3, 4, 5, 6, 7}$ have vertex arboricity at most 2. For a toroidal graph $G$, it is known that $a(G)leq 4$. Let us consider the following question: do toroidal graphs without $k$-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for $k=5$. Since a complete graph on 5 vertices is a toroidal graph without any $k$-cycles for $kgeq 6$ and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا