ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions is developed. The approach is based on the propagation of all one-electron states via the numerical solving of the time-dependent Dirac equation in the monopole approximation. The electron wave functions are represented as finite sums of basis functions constructed from B-splines using the dual-kinetic-balance technique. The calculations of the created particle numbers and the positron energy spectra are performed for the collisions of bare nuclei at the energies near the Coulomb barrier with the Rutherford trajectory and for different values of the nuclear charge and the impact parameter. To examine the role of the spontaneous pair creation the collisions with a modified velocity and with a time delay are also considered. The obtained results are compared with the previous calculations and the possibility of observation of the spontaneous pair creation is discussed.
A new approach for solving the time-dependent two-center Dirac equation is presented. The method is based on using the finite basis set of cubic Hermite splines on a two-dimensional lattice. The Dirac equation is treated in rotating reference frame. The collision of U92+ (as a projectile) and U91+ (as a target) is considered at energy E_lab=6 MeV/u. The charge transfer probabilities are calculated for different values of the impact parameter. The obtained results are compared with the previous calculations [I. I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)], where a method based on atomic-like Dirac-Sturm orbitals was employed. This work can provide a new tool for investigation of quantum electrodynamics effects in heavy-ion collisions near the supercritical regime.
A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the U91+(1s)-U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا