ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of the frequency of transient brightenings in the core of solar active regions as observed in the Fe XVIII line component of AIA/SDO 94 A filter images. The Fe XVIII emission is isolated using an empirical correction to remove the contribution of warm emission to this channel. Comparing with simultaneous observations from EIS/Hinode, we find that the variability observed in Fe XVIII is strongly correlated with the emission from lines formed at similar temperatures. We examine the evolution of loops in the cores of active regions at various stages of evolution. Using a newly developed event detection algorithm we characterize the distribution of event frequency, duration, and magnitude in these active regions. These distributions are similar for regions of similar age and show a consistent pattern as the regions age. This suggests that these characteristics are important constraints for models of solar active regions. We find that the typical frequency of the intensity fluctuations is about 1400s for any given line-of-sight, i.e. about 2-3 events per hour. Using the EBTEL 0D hydrodynamic model, however, we show that this only sets a lower limit on the heating frequency along that line-of-sight.
Recent observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode have shown that low density areas on the periphery of active regions are characterized by strong blue-shifts at 1 MK. These Doppler shifts have been associate d with outward propagating disturbances observed with Extreme-ultraviolet and soft X-ray imagers. Since these instruments can have broad temperature responses we investigate these intensity fluctuations using the monochromatic imaging capabilities of EIS and confirm their 1 MK nature. We also find that the Fe XII 195.119 A blue shifted spectral profiles at their footpoints exhibit transient blue wing enhancements on timescales as short as the 5 minute cadence. We have also looked at the fan peripheral loops observed at 0.6 MK in Si VII 275.368 A in those regions and find no sign of the recurrent outward propagating disturbances with velocities of 40 - 130 km/s seen in Fe XII. We do observe downward trends (15 - 20 km/s) consistent with the characteristic red-shifts measured at their footpoints. We, therefore, find no evidence that the structures at these two temperatures and the intensity fluctuations they exhibit are related to one another.
The relationships among coronal loop structures at different temperatures is not settled. Previous studies have suggested that coronal loops in the core of an active region are not seen cooling through lower temperatures and therefore are steadily he ated. If loops were cooling, the transition region would be an ideal temperature regime to look for a signature of their evolution. The Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode provides monochromatic images of the solar transition region and corona at an unprecedented cadence and spatial resolution, making it an ideal instrument to shed light on this issue. Analysis of observations of active region 10978 taken in 2007 December 8 -- 19 indicates that there are two dominant loop populations in the active region: core multi-temperature loops that undergo a continuous process of heating and cooling in the full observed temperature range 0.4-2.5 MK and even higher as shown by the X-Ray Telescope (XRT); and peripheral loops which evolve mostly in the temperature range 0.4-1.3 MK. Loops at transition region temperatures can reach heights of 150 Mm in the corona above the limb and develop downflows with velocities in the range of 39-105 km/s.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا