ترغب بنشر مسار تعليمي؟ اضغط هنا

We report elastic neutron scattering and transport measurements on the Ni and Cr equivalently doped iron pnictide BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$. Compared with the electron-doped BaFe$_{2-x}$Ni$_{x}$As$_{2}$, the long-range antiferromagnetic ( AF) order in BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$ is gradually suppressed with vanishing ordered moment and N{e}el temperature near $x= 0.20$ without the appearance of superconductivity. A detailed analysis on the transport properties of BaFe$_{2-x}$Ni$_{x}$As and BaFe$_{2-2x}$Ni$_{x}$Cr$_{x}$As$_{2}$ suggests that the non-Fermi-liquid behavior associated with the linear resistivity as a function of temperature may not correspond to the disappearance of the static AF order. From the temperature dependence of the resistivity in overdoped compounds without static AF order, we find that the transport properties are actually affected by Cr impurity scattering, which may induce a metal-to-insulator crossover in highly doped BaFe$_{1.7-y}$Ni$_{0.3}$Cr$_{y}$As$_{2}$.
We use polarized neutron scattering to demonstrate that in-plane spin excitations in electron doped superconducting BaFe1.904Ni0.096As2 (Tc=19.8 K) change from isotropic to anisotropic in the tetragonal phase well above the antiferromagnetic (AF) ord ering and tetragonal-to-orthorhombic lattice distortion temperatures (Tn=Ts=33 K) without an uniaxial pressure. While the anisotropic spin excitations are not sensitive to the AF order and tetragonal-to-orthorhombic lattice distortion, superconductivity induces further anisotropy for spin excitations along the [1,1,0] and [1,-1,0] directions. These results indicate that the spin excitation anisotropy is a probe of the electronic anisotropy or orbital ordering in the tetragonal phase of iron pnictides.
We use inelastic neutron scattering to systematically investigate the Ni-doping evolution of the low-energy spin excitations in BaFe2-xNixAs2 spanning from underdoped antiferromagnet to overdoped superconductor (0.03< x < 0.18). In the undoped state, the low-energy (<80 meV) spin waves of BaFe2As2 form transversely elongated ellipses in the [H, K] plane of the reciprocal space. Upon Ni-doping, the c-axis magnetic exchange coupling is rapidly suppressed and the momentum distribution of spin excitations in the [H, K] plane is enlarged in both the transverse and longitudinal directions with respect to the in-plane AF ordering wave vector of the parent compound. As a function of increasing Ni-doping x, the spin excitation widths increase linearly but with a larger rate along the transverse direction. These results are in general agreement with calculations of dynamic susceptibility based on the random phase approximation (RPA) in an itinerant electron picture. For samples near optimal superconductivity at x= 0.1, a neutron spin resonance appears in the superconducting state. Upon further increasing the electron-doping to decrease the superconducting transition temperature Tc, the intensity of the low-energy magnetic scattering decreases and vanishes concurrently with vanishing superconductivity in the overdoped side of the superconducting dome. Comparing with the low-energy spin excitations centered at commensurate AF positions for underdoped and optimally doped materials (x<0.1), spin excitations in the over-doped side (x=0.15) form transversely incommensurate spin excitations, consistent with the RPA calculation. Therefore, the itinerant electron approach provides a reasonable description to the low-energy AF spin excitations in BaFe2-xNixAs2.
Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (0$leq x leq$1.00) single crystals with high-quality have been grown successfully using the travelling-solvent floating-zone technique. The patterns of X-ray diffraction suggest high crystalline quality of the sa mples. After post-annealing in flowing oxygen at 600 $^o$C, the crystals show sharp superconducting transitions revealed by AC susceptibility. The hole concentration $p$ is deduced from superconducting transition temperature ($T_c$), which exhibits a linear relation with La doping level $x$. It ranges from the heavily overdoped regime ($p approx$ 0.2) to the extremely underdoped side ($p approx$ 0.08) where the superconductivity is absent. Comparing with the superconducting dome in Bi$_{2+x}$Sr$_{2-x}$CuO$_{6+delta}$ system, the effects from out-of-plane disorders show up in our samples. Besides the La doping level $x$, the superconductivity is also sensitive to the content of oxygen which could be tuned by post-annealing method over the whole doping range. The post-annealing effects on $T_c$ and $p$ for each La doping level are studied, which give some insights on the different nature between overdoped and underdoped regime.
Single crystals of A$_{1-x}$K$_x$Fe$_2$As$_2$ (A=Ba, Sr) with high quality have been grown successfully by FeAs self-flux method. The samples have sizes up to 4 mm with flat and shiny surfaces. The X-ray diffraction patterns suggest that they have hi gh crystalline quality and c-axis orientation. The non-superconducting crystals show a spin-density-wave (SDW) instability at about 173 K and 135 K for Sr-based and Ba-based compound, respectively. After doping K as the hole dopant into the BaFe$_2$As$_2$ system, the SDW transition is smeared, and superconducting samples with the compound of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ (0 $< x leqslant$ 0.4) are obtained. The superconductors characterized by AC susceptibility and resistivity measurements exhibit very sharp superconducting transition at about 36 K, 32 K, 27 K and 23 K for x= 0.40,0.28,0.25 and 0.23, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا